next up previous
Next: About this document ... Up: eccomas Previous: CONCLUSIONS

Bibliography

1
Special issue: parallel methods for ordinary differential equations, Applied Numerical Mathematics 11 (1993).

2
Bellen, A. and M. Zennaro (1993), in [1], 1-2.

3
Cofer, H. N. and M. A. Stadtherr, Hybrid direct/iterative sparse matrix techniques for process simulation, AIChE Annual Meeting, San Francisco (1994).

4
Duff, I. S., A. M. Erisman and J. K. Reid, Direct methods for sparse matrices, Oxford University Press, London (1986).

5
Moe, H. I. and T. Hertzberg, Advanced computer architectures applied in dynamic process simulation: a review, Computers Chem. Engng. 18, S375-S384 (1994).

6
Paloschi, J., Steps towards steady state simulation on MIMD machines: solving nonlinear equations, paper 223c, AIChE Annual Meeting, San Francisco (1994).

7
Saad, Y. and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Computing 7. 856-869 (1986).

8
Secchi, A. R., M. Morari and E. C. Biscaia Jr, The waveform relaxation method in the concurrent dynamic process simulation, Computers Chem. Engng. 17, 683-704 (1993).

9
Skjellum, A., Concurrent dynamic simulation: multicomputer algorithms research applied to ordinary differential-algebraic process system in chemical engineering, Ph. D. Thesis, California Institute of Technology, Pasadena, CA. (1990).

10
Vegeais, J. A. and M. A. Stadtherr, Vector processing strategies for chemical process flowsheeting, AIChE Journal 36, 1687-1696 (1990)

11
Zitney, S. E., L. Brull, L. Lang and R. Zeller, Plantwide dynamic simulation on supercomputers: modeling a BAYER distillation process, Presented at FOCAPD'94, Snowmass Village, CO, July 10-15 (1994).

12
Zitney, S. E. and M. A. Stadtherr, Frontal algorithms for equation-based chemical process flowsheeting on vector and parallel computers, Computers Chem. Engng. 17, 319-338 (1993)




2000-03-22
1