
CompactMap: A Mental Map Preserving Visual Interface for Streaming Text Data

Xiaotong Liu
The Ohio State University

Columbus, USA
liuxiaot@cse.ohio-state.edu

Yifan Hu, Stephen North
AT&T Labs Research
Florham Park, USA

{yifanhu,north}@research.att.com

Han-Wei Shen
The Ohio State University

Columbus, USA
hwshen@cse.ohio-state.edu

Abstract—As text streams become increasingly available
from social media such as Facebook and Twitter, visual analysis
of streaming text data is playing an important role in most
business sectors. A fundamental challenge in visualizing a
large amount of streaming text data is to preserve the user’s
mental map to enable tracking dynamic changes in topics, while
simultaneously utilizing the display space efficiently. In this
paper, we present CompactMap, an online visual interface that
packs text clusters efficiently, with stable updates to maintain
the user’s mental map. It achieves spatiotemporally coherent
layouts by dynamically matching clusters across time, and
removing cluster overlaps according to spatial proximity and
constraints. We developed a visual search engine based on
CompactMaps for exploring a large amount of text streams
in details on demand. We demonstrate the effectiveness of our
approach in a controlled user study compared with a competing
method.

Keywords-Dynamic visualization, mental map preservation,
streaming text data, visual search engine

I. INTRODUCTION

Less than 10 years old, Twitter has become a ubiquitous
micro-blogging service. It has revolutionized and reshaped
the spread of information in the cyberworld. Many organiza-
tions now extract and analyze useful nuggets of information
from Twitter messages (tweets). Marketing experts and other
people who study public sentiment are very interested in
analyzing social media messages to quickly gauge the impact
of marketing campaigns, and to capture feedback about new
products. In real-time analysis scenarios, tweets are often
modeled as data streams of small packets or messages that
contain unstructured or semi-structured texts. A fundamental
challenge for tweet analysis is the scale of the data involved.
Until June 2012, Twitter has over 517 million users [20],
generating over 340 million tweets and handling over 1.6
billion search queries per day. With the large volume of
tweets, it is nearly impossible even to manually explore and
find critical information, let alone to monitor and analyze
the evolution of important topics over time.

To provide mid-level overviews of tweet streams and topic
trends, Gansner et al. previously proposed TwitterScope
[12]. This system clusters tweet streams into subtopics based
on semantic analysis, and renders subtopics as countries
using a geographic map metaphor called GMap [13]. While
TwitterScope seems effective based on informal trials, sev-

eral issues were found in visualizing a large amount of tweet
streams. First, the irregular shapes of GMap clusters make
it difficult to compare cluster sizes to decide which topics
are more popular. Second, the clusters often do not fill the
display space very well, forcing the layout to be scaled down
to fit the display space, which makes pictures and labels
harder to see. Third, GMap layouts can have an imbalanced
aspect ratio, and periodically repacking afresh to overcome
this may significantly change the layout, which disrupts the
user’s mental map. Also, TwitterScope is limited in only
monitoring a fixed set of pre-defined keywords. Arbitrary
keyword queries would be more useful, allowing users to
search for their own topics of interest.

To solve these problems, we propose CompactMap, a
visual interface that packs tweet clusters effectively while
generating stable layouts. CompactMap achieves coherent
layout by dynamically matching clusters across time, and
removes overlaps using constrained multidimensional scal-
ing. We also describe an online visual search engine based
on CompactMaps for text stream querying and message
retrieval. It helps users interactively explore filtered text
streams in details on demand. We conducted a controlled
user study that shows the effectiveness of CompactMap in
comparison with GMap for visual search, comparison and
tracking. To summarize, the main contributions of this work
are:
• A dynamic visualization technique that displays clus-

ters in text streams as stable, space-efficient layouts.
• A real-time visual search engine that supports arbi-

trary keyword search combined with semantic analysis
of topics.

• An enhanced real-time visual analysis system that
enables users to explore and compare discussions and
topics of interest intuitively and flexibly.

II. RELATED WORK

Social media data monitoring and analysis has been
increasingly popular as the influence of social media grows
in daily life. Dork et al. [10] introduced Visual Backchannel
as a way of following and exploring online conversations
about large-scale events. Cuvelier and Aufaure [7] proposed
topographic networks of tags, representing a tag cloud with
a topographic metaphor to highlight the most important



concepts found for a given search on Twitter. Based on
off-line processing, Twitinfo [19] employed a timeline-based
display to highlight peaks of high tweet activity discovered
by a streaming algorithm. Whisper [6] traced and visualized
the process of information diffusion in social media using
a sunflower metaphor. Previous work by Gansner et al.
[12] summarized and visualized clustered tweets using a
geographical map metaphor [13]. In contrast with the above
tools, we aim at providing an online visual search engine
that automatically retrieves tweets and summarizes topics for
user specified search query, and visualizes the results in a
stable view that allow users to track the topics of discussion
over time.

For maintaining dynamically stable layouts, most prior
work has focused on studying dynamic graph layouts.
Brandes and Wagner [5] adapted a force-directed model
to dynamic graphs using a Bayesian framework. Diehl and
Görg [9] considered graphs in a sequence to create smoother
transitions. Brandes and Corman [3] proposed a system for
visualizing network evolution, in which mental map preser-
vation was achieved by pre-computing good locations for the
nodes and fixing those positions across the network layers.
Brandes and Mader [4] recently studied offline dynamic
graph drawings and compared various techniques such as
aggregation, anchoring and linking. While work on dynamic
graph visualization typically assumes the input graph is
connected, stable packing of dynamic and disconnected
graphs has also been considered [12]. Although graph-based
dynamic layouts can achieve relatively stable views, the
utilization of display space can be poor due to the arbitrary
shape of graph layouts and having too much empty space
among nodes. On the other hand, space-filling visualization
techniques such as Treemap [2], [16] and Bubblemap [1]
can utilize the available space efficiently, but it is often
difficult to maintain a dynamic layout over time. Hybrid
methods that combine the graph and space-filling layouts
were applied to hierarchical data visualization [8], [15] and
multiple-category visualization [14]. However, although the
underlying rectangle-packing algorithm [15] outperformed
Treemap for maintaining the dynamic layout, in the worst
case it can still show large displacements of clusters between
consecutive frames, as well as considerable wasted space
between clusters.

III. VISUALIZATION SYSTEM DESIGN

In this section, we outline a set of challenges for designing
an effective visualization system for streaming text data
analysis, and give an overview of a prototype system.

A. Design Challenges

First of all, the main challenge is how to handle the high
volume and velocity of text streams. Since the real-life data
analysis mostly focuses on the data of interest, it will highly
reduce the data size for analysis if the system allows analysts

to retrieve interesting data on request. To address this, a
scalable search engine that can deal with real-time querying
and incremental updates across distributed devices is highly
desirable.

Secondly, text streams that are close in time often exhibit
similar characteristics. Analysis of the content can be helped
greatly if the related streams can be appropriately clustered,
categorized and summarized. Therefore, fast algorithms are
needed to perform semantic analysis and content summa-
rization in real-time.

Thirdly, to allow analysts to monitor and track relevant
discussions intuitively, visualizing search results with ef-
fective visual encoding schemes is essential to providing
an informative, convenient and pleasant data exploring and
communicating environment. The main issue to address is
how to merge each stream with existing data and update
the cluster visualization in a way that preserves the viewer’s
mental map. Another issue is how to efficiently utilize the
display space without scaling down the visualization, which
can make pictures and labels hardly legible.

B. System Overview

Figure 1 shows an overview of our visualization system.
The server cluster consists of several web servers with
different functionality: the streaming server, the storage
server, the analysis server and the communication server.
By way of Twitter’s streaming API, the streaming server
collects data with respect to a user-specified keyword query.
Unless the user changes the search query, the relevant data is
retrieved continuously and stored persistently in the storage
server, until the client browser navigates away from visu-
alization. This supports queries over any time period after
the streaming server started service. To analyze the sematic
contents of the text streams, similarity analysis and tweet
clustering are performed on the analysis server, in the same
way as TwitterScope [12] did. The content summarization
results are then sent to the visualization client (a browser
that supports HTML5) via the communication server.

Once the visualization client obtains the newly processed
data from the communication server, it visualizes the results
using a visual metaphor called CompactMap, a dynamic
visualization that packs topic clusters within the display
space. CompactMap provides a stable view of the time-
varying clusters that allows users to visually track the
discussion of topics over time, which will be described in
the next section.

We integrated CompactMap into the TwitterScope frame-
work to develop an online visualization system for tweet
streams (at http://tibesti.research.att.com/twitterscope/). Our
visualization system has been online for a few months,
and the heaviest tweet rate encountered was less than
one million tweets per hour. Our system can efficiently
handle concurrent search queries to cope with this packet
rate, with implementation of Node.js [17], an event-driven



Streaming 
Server

Storage 
Server

Communication
Server

Analysis 
Server

Visualization
Client

User
Twitter

Data

Keyword Query

Figure 1. Overview of the visualization system.

environment based on Googles V8 JavaScript engine. The
implementation of CompactMap in Javascript and HTML5 is
able to update the dynamic visualization of streaming tweet
clusters with staged animation in real-time.

IV. COMPACTMAP VISUALIZATION

In this section we will describe the visual metaphor
and encoding of CompactMap, and present algorithms to
generate them.

A. Visual Metaphor and Encoding

A major challenge in visualizing tweet stream clusters
is preserving visual stability to help users track dynamic
behavior over time. Moreover, this must be done without sac-
rificing too much display space. Space-filling visualization
techniques, such as Treemap [2], [16] and Bubblemap [1]
are very good at utilizing the available space, but as far as we
know, these techniques have not been extended effectively
to cope with dynamic data. Our approach is to devise a
dynamic visualization method that integrates a space-filling
metaphor with incrementally stable dynamic graph layout.

CompactMaps were inspired by quantum Treemaps [2]
and clustered graphs. In CompactMap, clusters are ren-
dered as rectangular nodes. Individual tweets are represented
by the Twitter icons that fill the clusters. We chose this
metaphor for several reasons. First, regular shapes such as
rectangles make it easier to compare cluster sizes, a task
which can be difficult using the cartographic map metaphor
(Figure 2 (left)) in TwitterScope [12]. Second, the irregular
shapes of clusters in a map metaphor often work against
effective use of the display space, making pictures and labels
less legible after scaling down the visualization to fit the
available space. Finally, representing clusters as rectangular
nodes allows us to develop spatiotemporally-coherent layout
algorithms for dynamic visualization, and at the same time
retain the main advantages of Treemaps as a space-filling
visualization.

Figure 2 (right) shows an example of a CompactMap
visualization. A list of the top words in the tweets of each
cluster is drawn as an overlay on each rectangle as a topic
summary. Compared with GMap (Figure 2 (left)), the cluster
shapes in a CompactMap are more regular, and the icons

are larger. A controlled user study comparing these two
visualizations will be described in Section V.

B. Dynamic Visualization

In an online social network such as Twitter, topics are
dynamic and very diverse. Table I summarizes the basic
cases and the possible visualization adjustment. These basic
cases can be combined to form more complex behaviors.
Note that in our visualization, due to the limit of screen
space, we maintain a moving window of up to 400 most
recent tweets, thus as new tweets arrive, old tweets are
removed and the current set of tweets are reclustered, which
give rises to the cases in this table.

Given a stream of clusters, our goal is to preserve the
spatiotemporal coherence of the clusters spanning multiple
time steps during whatever layout adjustment for dealing
with the dynamic topic behavior. Given an initial layout at
t = 1, our algorithm progressively generates layouts for t ≥ 2
with spatiotemporal coherence.

The initial layout at t = 1 can be any random layout, but
we opt to use a spiral-based space filling layout to place the
big clusters near the center of the display. We first rank the
clustered nodes at t = 1 in decreasing order of cluster size,
then place the nodes one at a time from the center of the
display space along a rectangular spiral of increasing radius.
A node’s placement is valid if it does not overlap any node
already placed; otherwise, it is moved to the next candidate
position. Figure 3 (a) shows an initial layout, where the
larger clusters are surrounded by smaller ones.

For time steps t and t + 1, out-going and in-coming
clusters have no temporal coherence. Therefore, the visual
stability of clusters depends only on how the persistent
clusters are adjusted. We consider a cluster to be a persistent
cluster at t if at least one tweet in that cluster at t still exists
in the new stream at t + 1. From Table I, we know that
one cluster can split into multiple ones, and several clusters
can merge into a single one. The problem to address is
matching the persistent clusters across time to appropriately
deal with different dynamic behavior, preserving the user’s
mental map. We note that the initial spiral layout will not
be necessarily maintained after cluster matching, due to the
mental map preservation.



Figure 2. GMap visualization (left) and CompactMap visualization (right) of the tweets for the search term “technology” on May 16, 2013.

Table I
THE BASIC CASES OF DYNAMIC BEHAVIOR OVER TIME AND THE POSSIBLE VISUALIZATION ADJUSTMENT.

Dynamic Topic Behavior Over Time Possible Visualization Adjustment

A topic will not be discussed Discard its cluster and its tweets

A topic becomes more/less popular Adjust the size and location of its cluster

A topic splits into multiple subtopics Separate its cluster into multiple clusters

Several topics merge into one topic Merge the clusters into one cluster

A new topic emerges Place the new cluster in an appropriate location

Let gt
i denote the i-th cluster node at time t, its position pt

i ,
and color ct

i . Let φ : gt+1
i →{gt

j|g
t+1
i ∩gt

j 6= /0} be a one-to-
many mapping for the persistent clustered nodes from time
step t + 1 to the previous one t. Our goal is to determine
positions and colors of the new clusters such that pt+1

i is
as close to those of φ(gt+1

i ) as possible. Likewise ct+1
i are

the same to at least one the member of φ(gt+1
i ), so as to

maintain visual stability during the transition.
We first measure the similarity of two cluster nodes

(gt+1
i ,gt

j) as:
si j =

∣∣gt+1
i ∩gt

j
∣∣ . (1)

Two clusters are considered very similar if they share many
common elements. With this metric, the position pt+1

i is
matched to a weighted centroid of the nodes from the
previous time step:

pt+1
i =

∑ j:gt
j∈φ(gt+1

i ) si j pt
j

∑ j:gt
j∈φ(gt+1

i ) si j
. (2)

Specifically, when several clusters merge into a single one,
the position of the new cluster will be closer to the ones
that have more tweets in common at the previous time step;
when one cluster splits into multiple ones, the positions of

the new clusters are set to the position of the previous cluster.
Overlap removal after cluster matching will be discussed in
the next subsection.

For the color matching, the color ct+1
i is matched to the

most similar one ct
j from the previous time step:

ct+1
i = ct

j, where j = arg max
k:gt

k∈φ(gt+1
i )

sik. (3)

C. Dynamic Layout

After matching the positions and colors of the clusters that
persist from time step t to t+1, the next problem is to adjust
the layout of clusters to avoid overlap, while maintaining
visual stability and efficient space utilization.

We first model the spatial proximity of the matched
clusters as a proximity graph G = (V,E) using Delaunay
triangulation, with V the set of nodes and E the set of edges.
Given a display region Γ, the goal is to find coordinates
pi for each node i ∈ V , such that: (1) there is no overlap
between any nodes {i, j} ∈ V ; (2) each edge (i, j) ∈ E is
close to its ideal length; and (3) each pi is inside Γ. In
CompactMap, nodes are not just points but clusters that have
finite area, so the actual display area Γ in relation to a cluster
must be shrunk by a margin that is half of that cluster’s width
and height, so that every cluster can be fully displayed if



1

2

2

1

3

3

4

4

5

5

7

6

Figure 3. Computation of the dynamic layout for CompactMap: (a) embedding an initial CompactMap in a spiral-based space filling layout; (b) removing
outdated clusters and retaining the clusters across time; (c) matching the persistent clusters from the previous time step to the new one with spatial and
color coherence, and adjusting the layout by the CMDS method for visual stability and efficient space utilization; (d) incorporating the new clusters to
form a new CompactMap.

its center lies inside Γ. With these conditions in mind, we
solve the layout problem using constrained multidimensional
scaling (CMDS)1:

min ∑
(i, j)∈E

wi j(‖pi− p j‖−di j)
2+α ∑

pi /∈Γ

(‖pi−Γ(pi)‖)2, (4)

where E is the set of triangulation edges, di j is the ideal
distance between nodes i and j, wi j is a weighting factor
(typically 1/d2

i j), α ≥ 0 is a balancing factor, and Γ(pi)
denotes the projection of pi to the region Γ – if pi is
outside of Γ, the projection Γ(pi) gives the point on the
boundary of Γ that is closest to pi; otherwise Γ(pi) = pi. The
rigidity of the triangulation provides sufficient scaffolding to

1For a full description and evaluation of the CMDS model, see Liu et
al. [18], where the model is also applied to laying out small multiples on
a grid.

constrain the relative positions of the components, and helps
preserve the global structure of the original spatial proximity
(similar to the PRISM approach [11]). For each edge (i, j),
the amount of overlap on the line xi → x j is denoted by
δi j (δi j is set to 0 if no collision is detected), and the ideal
distance is set as di j = li j +δi j, where li j is the length of the
triangulation edge between node i and j.

We employ the following iterative process to solve (4),

pi←
∑(i, j)∈E wi j(p j +di j

pi−p j
‖pi−p j‖ )+αΓ(pi)

∑(i, j)∈E wi j + α
, (5)

which is easier to implement in languages like JavaScript
that do not have sophisticated numerical libraries. Further-
more, by rendering the iterative process, a visually stable
animation can be shown, from the initial configuration to a



final constrained layout.
To present a consistent view for users to track changes

of clusters, staged animation is applied to first remove the
outgoing clusters towards the bottom of the view, then match
and adjust the positions of the persistent clusters, and finally
move the incoming new clusters into the view. The default
update rate is every 1 minute, but our algorithm can adapt
to any time interval, as long as the client can obtain the
newly processed data from the server within the specified
time interval.

Figure 3 illustrates the dynamic visualization and layout
of CompactMap from time step t to the next one t + 1.
Starting from an initial layout (Figure 3(a)), it first removes
outdated clusters. Next, persistent clusters in the previous
time step (Figure 3(b)) are matched to those at the next time
step (Figure 3(c)), with their layout adjusted by the CMDS
method to remove overlaps. From the staged animation, we
observed that the previous cluster gt

1 (in Figure 3(b)) split
into two parts — one of them was merged with the previous
cluster gt

2 to form the new cluster gt+1
2 (in Figure 3(c)), and

the other stayed as the new cluster gt+1
1 ; the previous cluster

gt
3 split into three clusters (gt+1

3 , gt+1
6 , gt+1

7 ) at the next time
step; and some clusters such as gt

4 and gt
5 were matched to

the new ones gt+1
4 and gt+1

5 with either a smaller or larger
size. Importantly, comparing Figure 3(b) and (c), we can see
that the spatial proximity of the matched persistent clusters
were well preserved by CMDS, and none of them fell outside
the display space, thus providing a visually stable layout
during the view transition. Figure 3(d) shows the final layout
at the time step t +1, where incoming clusters were incor-
porated into the matched persistent clusters. An animated
demonstration of the dynamic visualization and layout of
CompactMap is available at http://vimeo.com/67949445, or
in the video that accompanies this paper.

V. USER STUDY

We performed a controlled experiment to evaluate the
effectiveness of CompactMap visualization for visual search,
comparison and tracking, compared with a GMap visualiza-
tion as described in TwitterScope system [12]. We recruited
15 subjects (10 males, 5 females) having various back-
grounds in computer science, geographic information sci-
ence, electrical engineering, chemical engineering, physics,
economics and finance. The subjects ranged in age between
22 and 32 years, with a mean of 25.

A. Tasks and Procedure

We defined three tasks to assess the effectiveness of
CompactMap for both static layout (for visual search and
comparison) and dynamic layout (for visual tracking):

[T1] Rank three marked clusters by size.
[T2] Count how many times a given icon appears in a

marked cluster.

[T3] Determine whether a marked cluster persists at the
next time step.

A time limit of 60 seconds is imposed, corresponding to
TwitterScope’s default update rate.

For both GMap and CompactMap, we created 12 datasets
(4 for each task) of tweet clusters with various keyword
queries. Each dataset contains 30 to 50 tweet clusters of
two continuous time steps. The study was conducted as a
within-subjects experiment with 2 experimental conditions
(GMap and CompactMap), 3 tasks (T1, T2, T3) and 4
repetitions (visualization image) for each condition. For
each repetition, the subject was presented with only one
condition. We counter-balanced the selection of conditions
in the repetitions so that each subject performed the same
number of repetitions for both conditions. The order of
the repetitions was random in the study. Figure 2 shows a
repetition for T1 or T2, while Figure 4 illustrates a repetition
for T3.

Figure 4. CompactMap visualizations used in the user study system for
task T3 — determine whether a marked cluster persists at the next time
step. An initial visualization (left) would transition to a new one at the next
time step (right) when the subject clicks a “switch” button.

The study was performed on an Intel i7-2600, 3.4 GHz
CPU desktop computer and an ordinary 24-inch, 1920 ×
1080 pixel display. Prior to the experiment, the subjects
viewed a tutorial that provided several training tasks to
help them become familiar with the user interface of the
experimental system. For each task, the subject was given a
randomly chosen GMap or CompactMap visualization, and
then prompted to answer the question. After typing in the
answer(s) and clicking on the “next’ button, the next task
was loaded. For task T3, subjects were asked to click a
“switch” button, and a new image corresponding to the next
time step would be displayed. After subjects finished all
tasks, they were asked to rate their satisfaction with GMap
and CompactMap on a questionnaire containing 5 questions,
and finally, to participate in a semi-structured interview.
The user study system is presented in a video available at
http://vimeo.com/67949445.



0

5

10

15

20

25

T1 T2 T3

M
ea

n
 T

im
e 

(s
)

0

0.2

0.4

0.6

0.8

1

T1 T2 T3

M
ea

n
 A

cc
u

ra
cy

Gmap CompactMap

0

1

2

3

4

5

C1 C2 C3 C4 C5

U
se

r 
R

at
in

g
(1

-p
oo

r 
an

d
 5

-b
es

t)

Figure 5. Mean task completion time (left), accuracy (middle) and subjective satisfaction (right) for the user study.

B. Hypotheses
[H1] CompactMap outperforms GMap in visual comparison
of clusters. Because irregular shapes are difficult to compare
by size, we expect CompactMap’s rectangular clusters to
facilitate visual comparison.
[H2] CompactMap outperforms GMap in visual search for
specific elements. Because clusters in irregular shapes may
also waste display space, the icons in CompactMap will be
more readable.
[H3] CompactMap better supports visual tracking than
GMap. Because the layout of GMap can have an unbalanced
aspect ratio, and repacking afresh may significantly change
the map layout, CompactMap’s dynamic updates better
preserve a user’s mental map.
[H4] CompactMap has a positive impact on user satisfac-
tion. Because rectangular shapes are easier to understand
and follow, users will prefer CompactMap to GMap for
visualization tasks.

C. Results and Discussion
For each task, we measured accuracy and completion

time, and the subjective assessment from the evaluation
questionnaires. Task completion time and accuracy measures
were evaluated using single factor Analysis of Variance
(ANOVA) for the dependent variables. The average comple-
tion time and accuracy for each task are shown in Figure 5
(left) and (middle) respectively.

For T1, we found a significant effect for task completion
time, F(1,28) = 5.375, p = 0.003. The average time spent
was 24.25 seconds (SD = 8.36) with GMap, and 17.40
seconds (SD = 3.61) with CompactMap. Our analysis also
revealed a significant effect on the accuracy, F(1,28) =
3.333, p = 0.031. Overall, the subjects had 50% (SD = 0.38)
accuracy with GMap and 90% (SD = 0.21) with Com-
pactMap.

For T2, ANOVA analysis revealed a significant effect
for both task completion time (F(1,28) = 5.233, p = 0.004)
and accuracy (F(1,28) = 3.143, p = 0.040). On average,
the subjects spent 20.10 seconds (SD = 4.93) searching the
given target in GMap, while 13.49 seconds (SD = 2.16)
in CompactMap; 86.67% of the answers were correct with
GMap, while 96.67% with CompactMap.

For T3, we found a significant effect for task completion
time, F(1,28) = 3.902, p = 0.016. The average comple-
tion time was 19.46 seconds (SD = 6.34) with GMap,
and 13.33 seconds (SD = 3.21) with CompactMap. Task
accuracy was not found to have a significant difference,
F(1,28) = 0.471, p = 0.172. On the whole, the subjects had
40% (SD = 0.28) correct answers with GMap, and 66.67%
with CompactMap.

The questionnaire asked subjects to assess their satisfac-
tion with CompactMap and GMap on multiple criteria: [C1]
GMap/CompactMap was MORE helpful in answering the
questions; [C2] I could find targets MORE quickly with
GMap/CompactMap; [C3] I was MORE confident in my
answer with GMap/CompactMap; [C4] GMap/CompactMap
would be MORE beneficial if I used it for visual comparison;
and [C5] GMap/CompactMap is visually MORE pleasing.
The score scale is from 1 (poor) to 5 (best), with 3 as
neutral. Figure 5 (right) provides the average ratings for
each criterion. Generally CompactMap was rated higher
than GMap. In particular, subjects were more efficient and
confident in their results with CompactMap.

In interviews, most subjects expressed a preference for
the CompactMap design, stating that and it is easier to
determine which topics are more popular, compared with
GMap. Three subjects mentioned that searching targets in
GMap was tedious and even irritating since icons in GMap
are not aligned uniformly as in CompactMap. One subject
reported that he sometimes counted a single item more than
once in GMap, due to the lack of alignment. Several subjects
mentioned that GMap initially caused confusion because
they interpreted it as a real map at first sight, and wondered
if the map showed the geo-locations of tweets.

Based on these results, the hypotheses are well supported.
The shorter task completion time and higher accuracy
support H1, H2 and H3. Statistically, the differences of
completion time and accuracy for all tasks were significant,
except for the accuracy of T3. H4 is supported by the
questionnaire results, which indicates that most subjects pre-
ferred the rectangular shapes and dynamic layout provided
by CompactMap.

We note that with CompactMap, we lose the ability



to encode cluster-cluster similarity through proximity of
clusters, something that GMap can achieve. However, due
to the dynamic streaming nature of our data, users typically
do not have enough time from one frame to the next
to study cluster-cluster relationships, thus, we believe that
similarity among clusters is not as important as the benefits
CompactMap brings, as discussed in Section IV-A.

In summary, user studies show that CompactMap is use-
ful in helping users in visually searching, comparing and
tracking clusters quickly and accurately. The regular shape
of clusters was valued by the users, and most users preferred
CompactMap.

VI. CONCLUSION AND FUTURE WORK

In this study, we presented CompactMap, an online visual
interface that packs text clusters in a way that is space-
efficient, and generates stable layouts of evolving clusters.
It does this by dynamically matching clusters across time,
and adjusting the layout according to spatial proximity and
constraints that preserve a user’s mental map. A controlled
user study was conducted to show the effectiveness of
CompactMap in comparison with GMap for visual search,
comparison and tracking. We implemented CompactMap in
a visualization system that provides an online visual search
engine for text stream querying and retrieval of items of
interest.

In the future, we would like to investigate how to automat-
ically select critical time frames for better understanding of
evolving topics. We also hope to make the general keyword
search service available to the public as soon as possible.

REFERENCES

[1] B. B. Bederson. Photomesa: a zoomable image browser using
quantum treemaps and bubblemaps. In Proceedings of the
14th annual ACM symposium on User interface software and
technology, 2001.

[2] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered
and quantum treemaps: Making effective use of 2d space to
display hierarchies. ACM Transactions on Graphics, 2002.

[3] U. Brandes and S. R. Corman. Visual unrolling of network
evolution and the analysis of dynamic discourse. Information
Visualization, 2003.

[4] U. Brandes and M. Mader. A quantitative comparison of
stress-minimization approaches for offline dynamic graph
drawing. In Proceedings of the 19th international conference
on Graph Drawing, 2012.

[5] U. Brandes and D. Wagner. A bayesian paradigm for dynamic
graph layout. In Graph Drawing, 1997.

[6] N. Cao, Y.-R. Lin, X. Sun, D. Lazer, S. Liu, and H. Qu.
Whisper: Tracing the spatiotemporal process of information
diffusion in real time. IEEE Transactions on Visualization
and Computer Graphics, 2012.

[7] E. Cuvelier and M.-A. Aufaure. A buzz and e-reputation
monitoring tool for twitter based on galois lattices. In Pro-
ceedings of the 19th international conference on Conceptual
structures for discovering knowledge. Springer-Verlag, 2011.

[8] W. Didimo and F. Montecchiani. Fast layout computation of
hierarchically clustered networks: Algorithmic advances and
experimental analysis. In The 16th International Conference
on Information Visualisation, 2012.

[9] S. Diehl and C. Görg. Graphs, they are changing. In the 10th
International Symposium on Graph Drawing, 2002.

[10] M. Dork, D. Gruen, C. Williamson, and S. Carpendale. A
visual backchannel for large-scale events. IEEE Transactions
on Visualization and Computer Graphics, 2010.

[11] E. R. Gansner and Y. Hu. Efficient node overlap removal
using a proximity stress model. In Graph Drawing. Springer-
Verlag, 2009.

[12] E. R. Gansner, Y. Hu, and S. North. Visualizing streaming text
data with dynamic graphs and maps. In Proceedings of the
20th international conference on Graph Drawing. Springer-
Verlag, 2012.

[13] Y. Hu, E. R. Gansner, and S. Kobourov. Visualizing graphs
and clusters as maps. IEEE Computer Graphics and Appli-
cations, 2010.

[14] T. Itoh, C. Muelder, K.-L. Ma, and J. Sese. A hybrid
space-filling and force-directed layout method for visualizing
multiple-category graphs. In IEEE Pacific Visualization, 2009.

[15] T. Itoh, Y. Yamaguchi, Y. Ikehata, and Y. Kajinaga. Hi-
erarchical data visualization using a fast rectangle-packing
algorithm. IEEE Transactions on Visualization and Computer
Graphics, 2004.

[16] B. Johnson and B. Shneiderman. Tree-maps: a space-filling
approach to the visualization of hierarchical information
structures. In Proceedings of the 2nd conference on Visu-
alization, 1991.

[17] Joyent. Node.js, http://nodejs.org/.

[18] X. Liu, Y. Hu, S. North, T.-Y. Lee, and H.-W. Shen.
Correlatedmultiples: Spatially coherent small multiples with
constrained multidimensional scaling. OSU Technical
Report SERIES (OSU-CISRC-4/13-TR10), ftp://ftp.cse.ohio-
state.edu/pub/tech-report/2013/TR10.pdf, 2013.

[19] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Mad-
den, and R. C. Miller. Twitinfo: aggregating and visual-
izing microblogs for event exploration. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011.

[20] Semiocast. Twitter reaches half a billion accounts, with more
than 140 millions in the u.s.


