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Abstract

In this work, we describe our efforts in fighting
against abusive language and present insights
gained. Specifically, we conduct a compre-
hensive multi-grained text representation anal-
ysis on current popular language models from
crude word segmentation to single-byte gran-
ularity. We have found that granularity signif-
icantly impacts the empirical performance of
the model, to the extent that a simple linear
model could also beat well-tuned CNN and
BiLSTM although more compact multi-hot
byte-level quantization and subword schemes
are introduced to boost them. As a contin-
ual effort towards the fight against abusive lan-
guage, we introduce an enhanced BERT, on
which subword works well for context under-
standing but performs poorly on intentional
obfuscations. We propose to rescue its defi-
ciency by integrating byte and character and
develop a Multi-Grained Ensemble Learning
(MGEL) framework. It advances the state-of-
the-art performance on the largest abusive lan-
guage datasets as demonstrated by our evalua-
tion.

1 Introduction

It is notoriously risky for online audiences to be
exposed to abusive language when they engage
on social media, which could have a negative im-
pact on the integrity of online communities. Thus,
there have been continued efforts cracking down on
toxicity from different media platforms including
setting up standards and guidelines for potential
users, human moderation, and machine learning
detection systems (Nobata et al., 2016; Badjatiya
et al., 2017; Schmidt and Wiegand, 2017). The pro-
found impacts of toxic contents can extend from
cyberspace to the physical security of enterprise
and even the entire society. For instance, the alle-
gations against social media, especially Facebook,
with regard to Russia’s 2016 election-meddling has

forced the company to overhaul the News Feed
and hire additional moderators1. In some cases,
machine learning-based moderation systems could
also mark ordinary contents as abusive language
mistakenly2.

Therefore, it has been important and challeng-
ing to understand and develop models to to detect
toxic user generated contents with high accuracy.
Previous studies have undertaken pioneering explo-
rations on this topic. Most works treat toxic com-
ments detection in the same way generic text classi-
fication is carried out or alternatively focus on cer-
tain ethnic groups or building up blacklists of swear
words (Yin et al., 2009; Warner and Hirschberg,
2012; Sood et al., 2012; Nobata et al., 2016; Bad-
jatiya et al., 2017). The involved features above are
all limited to words or character levels.

Perpetrators often intentionally obfuscate cer-
tain words about groups, or abusive words, by mis-
spelling, or leetspeak (e.g., “/\/1gger”, “ph*ck”,
“w.e.t.b.a.c.k.”) (Perea et al., 2008), which could
easily create new words not seen by a word-based
model (Gröndahl et al., 2018). To alleviate this, a
slightly finer granularity of subwords can be lever-
aged to better capture word obfuscation, as well as
the out-of-vocabulary problem (Wu et al., 2016; De-
vlin et al., 2018). On the other hand, character-level
features are demonstrated better than word-level
ones in text classification (Zhang et al., 2015; Kim
et al., 2016), especially for processing less curated
user-generated texts. The downside, however, is
that it only works well on the single-byte character
set. When it comes to the multi-byte characters
(e.g., CJK and Emojis), vocabulary has to be large
enough to cover them, which could be problem-

1https://www.vanityfair.com/news/2018/08/facebooks-
hate-speech-problem-may-be-bigger-than-it-realized

2https://abcnews.go.com/beta-story-
container/US/facebook-blocks-restores-declaration-
independence-post/story?id=56383239
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atic for the one-hot encoding scheme. To address
this, we introduce more fine-grained byte-level de-
composition into abusive language study, which
provides a more compact representation.

In the domain of abusive language detection, the
state-of-the-art performance (SOTA) come from
Bidirectional LSTM (BiLSTM) and attention based
Bidirectional Encoder Representations from Trans-
formers (BERT) (Agrawal and Awekar, 2018; Bo-
dapati et al., 2019). However, the systematic stud-
ies on text representation remain absent. To this
end, we investigate how word, subword, charac-
ter and byte shape their performance on large-
scale datasets totaling over 4 million examples (the
largest one so far). More importantly, although
classical machine learning methods are not shown
competitive in existing studies, we revisit them and
introduce a simple yet effective algorithm. In addi-
tion, we propose an enhanced BERT architecture
that outperforms the SOTA. Finally, we do ensem-
ble learning by integrating classical machine learn-
ing and enhanced BERT for further advancing the
state-of-the-art performance of abusive language
detection.

The main contributions are: (1) pushing the state-
of-the-art performance on the largest and compre-
hensive abusive datasets so far; (2) performing the
first systematic study exploring multi-grained text
representation including byte for abusive text and
offering useful insights.

2 Related Work

Early studies on the toxicity detection took ad-
vantage of handcrafted generic features such as
N-gram, Term Frequency-Inverse Document Fre-
quency (TF-IDF), regular expressions patterns, lex-
ical, parser, linguistic, syntactic, semantic and
contextual features to distinguish between the
toxic comments and ordinary ones (Warner and
Hirschberg, 2012; Chen et al., 2012; Nobata et al.,
2016). There are also specific studies devoted
to certain ethnic groups (Warner and Hirschberg,
2012) and blacklist/swear words (Agrawal and
Awekar, 2018), where large-scale labeling and an-
notation are generally performed by the crowd-
sourcing Amazon Mechanical Turk workers and hu-
man moderators (Nobata et al., 2016). Recently, a
growing number of end-to-end learning algorithms
have also been proposed to fight against hate speech
(Badjatiya et al., 2017; Gambäck and Sikdar, 2017;
Zhang et al., 2018; Founta et al., 2019; Agrawal

and Awekar, 2018; Bodapati et al., 2019). BiLSTM
and BERT achieve the best performance in the race
(Agrawal and Awekar, 2018; Bodapati et al., 2019).

To better model the irregularity of natural lan-
guage such as rare and unknown words, researchers
has explored various granularities of text model-
ing: word embedding enriched with sub-word infor-
mation (FastText) (Bojanowski et al., 2017), byte-
pair encoding (BPE) (Sennrich et al., 2016), byte-
pair embedding (BPEmb) or sub-word embedding
(“wordpieces”) (Wu et al., 2016), and character
based learning (Zhang et al., 2015; Kim et al., 2016)
have been proposed. Byte-level inputs were also
explored in other fields like Named Entity Recog-
nition and Part-of-Speech tagging with multilin-
gual backgrounds (Irie et al., 2017; Gillick et al.,
2015). Recently, there is a good study on word
decomposition models for abusive language detec-
tion (Bodapati et al., 2019). Our work, however,
differs from all the above approaches in several
aspects. First, we focus on abusive language and
offer comprehensive studies including a proposed
byte quantization scheme. Another one reason is
that multi-byte characters are in tiny proportion.
We also explore the potential of classical machine
learning models besides recently developed ones,
which turns out to be a very strong candidate.

3 Datasets

We prepare four datasets including audiences’ re-
actions (comments) to Yahoo! Finance and Ya-
hoo! News, Wikipedia talk pages and Twitter
(Agrawal and Awekar, 2018) toxicity and hate
speech datasets.

Table 1: Basic statistics of data including irregular text
(column % Ir.) and abusive in irregular text (% Ab. in
Ir.). posts with at least one multi-byte character and
those with only single-byte characters are referred to
be irregular and regular, respectively

Source # Abusive # Clean Total % Abusive % Ir. % Ab. in Ir.
Finance 34,839 1,072,724 1,107,563 3.1% 4.7% 3.9%
News 177,419 2,635,179 2,812,598 6.3% 3.0% 5.2%

Wikipedia 13,590 102,274 115,864 11.7% 7.9% 4.3%
Twitter 5,054 11,036 16,090 31.4% 10.2% 37.9%

Finance and News sets are sampled comments
posted for articles in Yahoo! Finance and Yahoo!
News between January 24, 2013 and January 23,
2018, spanning 1825 days. Original comments are
roughly grouped into abusive and clean categories,
respectively. Abusive comments are annotated out
of toxic categories. This broadly includes hate
speech, profanity, derogatory language, etc. Fur-
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ther details on the collection and labeling of these
data-sets can be found in (Nobata et al., 2016). Du-
plication is applied to remove redundancy. The
breakdown of clean and abusive comments is re-
ported in Table 1.

Wikipedia and Twitter datasets are more focused
on cyberbullying languages, which include abu-
sive languages that belong to any of the following
categories: personal attack, sexism, and racism.
Specifically, the corpus of Wikipedia and Twitter
have about 116K labeled discussion comments and
6K annotated tweets, respectively (Agrawal and
Awekar, 2018). We group all posts into abusive
and clean according to whether they are cyberbully-
ing languages, which are detailed in Table 1 as well.
In our subsequent experiments, we use 80% of the
data for training models (60% for training and 40%
for development) and perform model evaluation on
the remaining 20% as the test data.

We list the details of the above datasets in Table
1 and compute various statistics measures on the
abusive level. To specifically distinguish posts with
at least one multi-byte character and those with
only single-byte characters (referred to as irregu-
lar and regular, respectively), their statistics are
derived separately.

4 Methodology

We describe the proposed algorithms, elaborate on
the existing text representation and the proposed
scheme.

4.1 Algorithms

4.1.1 NBLR
Although existing studies show that deep learning
based models (e.g., CNN, LSTM) outperform tra-
ditional machine learning algorithms (e.g., logistic
regression, random forest) in abusive language de-
tection tasks (Agrawal and Awekar, 2018), we still
believe that a carefully constructed linear method
has a place in the tool chest of hatespeech detection,
because such a method has good interpretability. In
addition it is easy and fast to train, and stable and
efficient to serve.

Bag of n-gram tokens and TF-IDF have been
widely used for text classification (Nobata et al.,
2016; Agrawal and Awekar, 2018). The odds ratio
analysis3 shows that prior count ratio of tokens
between different classes is a reasonable metric

3https://en.wikipedia.org/wiki/Odds_
ratio

to weight how well they are indicative of abuse.
Thus, we propose to integrate them together and
develop a variant based on logistic regression (LR)
using Naive Bayes (NB) log-count ratios as feature
weights (Wang and Manning, 2012). We call this
algorithm NBLR for brevity, which is detailed in
Algorithm 1.

Algorithm 1: Naive Bayes Logistic Regres-
sion (NBLR)
Input :Text corpus and labels (M

samples)
Output :Logistic regression model
(1) Form word and character n-gram vector

of N elements from the text corpus
(2) Compute the M ×N TF-IDF matrix
(sparse)

(3) Compute the log Naive Bayes ratio rj
for each column j of X , then scale the
column with it

(4) Train a logistic regression using the
scaled feature matrix X and the labels

The Naive Bayes ratio rj of feature j mea-
sures the log-odds of the feature being associated
with positive labels. More specifically, let the
feature matrix be X ∈ RM×N , binary labels be
y ∈ {0, 1}M , then rj is defined as the logarithm
of the ratio between the average value of the ele-
ments of column j of X that are associated with
positive labels, and the average value associated
with negative labels.

4.1.2 Enhanced BERT
BERT has been widely demonstrated effective in
multiple natural language processing tasks.

In this work, we propose an Enhanced BERT
by making three-fold changes in comparison to
(Bodapati et al., 2019): (1) adding the whole-word
level positional embedding on top of the original
overall one as shown in Fig. 1 (a); (2) masking bi-
gram whole words instead of individual tokens as
illustrated in Fig. 1 (b); (3) pre-training the model
from scratch rather than only doing fine-tuning on
small-scale datasets.

The added whole-word level positional embed-
ding definitely introduces the extra complexity.
The parameter complexity of BERT is given as
(V + F + S) ×H + L × 12H2 + H2, where V ,
F , S are vocabulary size, the maximum sequence
length, segment type size. H and L is the hidden
layer dimension and the number of transformer

https://en.wikipedia.org/wiki/Odds_ratio
https://en.wikipedia.org/wiki/Odds_ratio
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block layers, respectively. For Base size of BERT,
O ≈ 110M. The added parameter number is ab-
solutely less than F × H = 512 ∗ 768 ≈ 0.4M,
which is less than 0.4% increment. In addition, the
new masking scheme doesn’t introduce additional
parameters. Thus, they work quite well in practice.

(a)

(b)

Figure 1: Enhanced BERT with (a) word-based po-
sitional embedding (b) bi-gram whole-word masking.
Next sentence prediction task is removed as well. This
is a subword model for illustration purpose, which can
be readily applied to character and byte ones.

4.2 Text Representation
The textual inputs are typically decomposed
into different granularities spanning from word
(Mikolov et al., 2015), subword (wordpiece) (Wu
et al., 2016), and character levels (Zhang et al.,
2015; Kim et al., 2016) for the downstream learn-
ing in online abusive language detection (Bodapati
et al., 2019). The byte-level decomposition, how-
ever, hasn’t been explored in abusive language de-
tection, albeit being studied elsewhere in different
manner from our study as mentioned in section 2.

Word is the most frequently used textual decom-
position unit. There are two main types that are
of interest to our work: n-gram and word2vec em-
bedding (Mikolov et al., 2013; Pennington et al.,
2014). Subword is usually referred to as word-
piece (Wu et al., 2016), which could be imple-
mented by the deterministic byte-pair encoding
(BPE) (Sennrich et al., 2016) or probabilistic un-
igram language model (Kudo, 2018). It helps to
alleviate the open vocabulary problems in differ-
ent NLP tasks. In this work, we utilize Google’s
SentencePiece with unigram language model to
generate subword vocabulary4. Given the gener-
ated subword vocabulary, we reformat text corpus

4https://github.com/google/
sentencepiece

and train subword embeddings based on word2vec
from scratch. Character is the basic unit of text
(Zhang et al., 2015). We here mainly utilize char-
acters through one-hot encoding as described in
(Zhang et al., 2015) and n-gram. The downside
of the former is that alphabet size cannot be large
enough to capture other non-English characters
(e.g., CJK) due to the curse of dimensionality. For-
tunately, non-English characters are often in tiny
proportion. For character n-gram in linear model
and vocabulary used in BERT models, character
alphabets are not limited to the above.

In addition to word, subword and character,
we propose to decompose text into bytes as well.
Specifically, we encode all observed characters
in the training data to obtain their corresponding
UTF-8 codes5 to generate a set of all unique bytes
as the vocabulary for the byte-level quantization.
Impressively, 206 bytes are sufficient to cover all
characters for data sets used in this work. Given a
character c, we retrieve its UTF-8 code denoted
as B = [b1, ..., bn], where n ∈ {1, 2, 3, 4} corre-
sponds to the encoding width. We then develop a
multi-hot byte-level quantization scheme, as shown
in Fig. 2. Then, each character is transformed to
one m-sized vector, where an element corresponds
to the count of the involved bytes. For instance,
sequence KDD ,Ω has 6 characters including a
white space, which is denoted as 6 × 9 matrix
[[1, 0, 0, 0, 0, 0, 0, 0, 0]T , [0, 1, 0, 0, 0, 0, 0, 0, 0]T ,
[0, 1, 0, 0, 0, 0, 0, 0, 0]T , [0, 0, 0, 0, 0, 0, 0, 0, 1]T ,
[0, 0, 1, 1, 1, 1, 0, 0, 0]T , [0, 0, 0, 0, 0, 0, 1, 1, 0]T ]
given a byte vocabulary {‘0x4b’, ‘0x44’, ‘0xf4’,
‘0x8f’, ‘0xb0’, ‘0x82’, ‘0xce’, ‘0xa9’, ‘0x20’}.
Vocabulary is built from UTF-8 codes for char-
acters K (0x4b), D (0x44), white space (0x20),
,(0xf40x8f0xb00x82) and Ω (0xce0xa9). If all
characters are with single byte (n = 1), the
multi-hot byte-level scheme is equivalent to the
character-level quantization (Zhang et al., 2015).
We here don’t report one-hot byte-level results due
to its inferior performance.

4.2.1 MGEL
NBLR and Enhanced BERT are two totally differ-
ent modeling schemes. The former one emphasizes
the neighbor-to-neighbor interaction locally using
traditional n-grams, whereas the latter one offers
the deep all-to-all attention globally thorough mod-
ern transformers. On the other hand, the input of

5https://docs.python.org/3/howto/
unicode.html

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://docs.python.org/3/howto/unicode.html
https://docs.python.org/3/howto/unicode.html
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Figure 2: Illustration of multi-hot (n-of-m) quantiza-
tion scheme for characters with n (n=1,2,3,4) bytes.
The number of rows is vocabulary size m.

Figure 3: Diagram of text representations and algo-
rithms employed. For word and subword embedding,
the embedding dimensions are 200, 300 for Twitter
and Wikipedia in Glove (Pennington et al., 2014). The
word2vec embedding trained from scratch is set to have
dimension of 300 (Mikolov et al., 2013). Original
BERT has subword vocabulary of around 30K tokens
from Google. Subword (eg., foot, ##ball), character
and byte vocabularies are generated from abusive text
corpora with sizes of 30K, 11K and 400, respectively.

NBLR can be thought of as the integration of word,
subword, and character. Likewise, we propose to
integrate byte, character and subword to form a
Multi-Grained Enhanced BERT. We then further
do ensemble learning of NBLR and Multi-Grained
Enhanced BERT using a non-trainable simple alge-
braic combiner. Specifically, we have

uj(x) =
C∑
c=1

wchc,j(x) (1)

where wc is the weight assigned to the cth classifier
h. They can be obtained based on the validation
performance. We call it Multi-Grained Ensemble
Learning (MGEL).

5 Experiments and Results

In this section, we present the current state-of-the-
art methods, evaluation metrics, experiment set-
tings and a series of experiments to study text rep-

resentations empirically. The whole study is sum-
marized graphically in Fig. 3.

5.1 Baselines

Even though many algorithms have been devel-
oped for abusive language detection, the current
state-of-the-art algorithms are Bidirectional LSTM
(BiLSTM) and attention based BERT (Agrawal and
Awekar, 2018; Bodapati et al., 2019). In addition,
we include Convolutional Neural Networks (CNN)
into baselines for the completeness.

CNN has also been effective in natural lan-
guage processing recently (Zhang et al., 2015;
Gambäck and Sikdar, 2017; Zhang et al., 2018; Irie
et al., 2017). Character-level CNN (Char-CNN)
has shown superior performance in text classifi-
cation compared to other levels of representation
(Zhang et al., 2015; Kim et al., 2016). In this con-
text, we leverage classical temporal CNN (one-
dimensional) as workhorse to perform textual rep-
resentation and model comparison analysis.

BiLSTM and Gated Recurrent Unit (GRU) are
both a recurrent neural network architecture, often
used in sequence data modeling. Bi-GRU is on par
with BiLSTM, thus we mainly study the granularity
comparison on BiLSTM (Chung et al., 2014).

BERT is a recently developed self-supervised
language model based on the Transformer encoder
network (Devlin et al., 2018). Instead of ingesting
the context from left to right or right to left in a
sequential way as in recurrent neural network ar-
chitecture (e.g., LSTM, BiLSTM), BERT proposes
to enable tokens to have visibility of all other to-
kens. It has been employed in the fight against
abusive language and demonstrates the state-of-
the-art performance amongst a plethora of deep
learning based advanced models with additional
feature engineering (Bodapati et al., 2019).

5.2 Evaluation Metrics

To assess the detection capacity of different input
granularities and algorithms, we adopt two met-
rics, namely, Area under Curves of Receiver Oper-
ating Characteristic (AUC@ROC) and Curves of
Precision-Recall (AUC@PR) (Davis and Goadrich,
2006), respectively. In addition, we examine F1
score and Matthews correlation coefficient (MCC
∈ [−1, 1], 1 for perfect prediction). These two
metrics are based on a specific operating point and
we take 0.5 in the involved experiments. MCC is
generally regarded as a balanced measure.
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5.3 Experiment Settings

We experiment NBLR with different combinations
of word and character n-grams. It’s found that
word-level 1,2-gram and character-level 1,2,3,4-
gram perform well in general. For temporal CNN
and BiLSTM, we experiment with word-, subword-
, character-, byte-level inputs, respectively. For
word and subword embedding of Yahoo! Finance
and News datasets, we utilize Gensim6 on abu-
sive text corpus to train embedding with output
dimension of 300 and vocabulary size of 376K. For
Wikipedia and Twitter, pre-trained Glove (Penning-
ton et al., 2014) is used for embedding with the
maximum corresponding output dimensions of 300
for Wikipedia and 200 for Twitter7. Character and
byte vocabularies are generated from correspond-
ing datasets. BERT has pre-trained models devel-
oped on standard text corpus including Wikipedia,
which can be used for fine-tuning. Following (Bo-
dapati et al., 2019), we take the uncased BERT-
Base model as the starting point. The maximum
sequence length is set to 300 for Finance, News
and Wikipedia, 50 for Twitter as same as subwords
in CNN and BiLSTM. We then fine-tune the model
for respective datasets.

To make parameter tuning practicable, we set
up the following rules for CNN and BiLSTM: (1)
For word and subword, we tune hyper-parameters
for the former and then apply them to the later.
The rationale is that both textual decompositions
generate similar distributions of textual length for
same data sets. Likewise, we perform the hyper-
parameter tuning for character and apply them to
byte. Pre-trained embedding is utilized for feed-
ing of word-level and subword-level inputs into
models. For character and byte level inputs, one-
hot and multi-hot representation is fed directly into
the end-to-end learning as mentioned in preceding
sections. (2) with regard to the datasets, Finance,
News and Wikipedia share a common set of hyper-
parameters. On the other hand, since Twitter is
different from others in terms of both textual length
and its distribution patterns, we have another set of
hyper-parameters.

In this manner of fixing hyper-parameters, we
attempt to make sure as much as possible that the
performance discrepancy can be attributed to the
difference in the textual decomposition approaches.

6https://github.com/RaRe-Technologies/gensim
7https://nlp.stanford.edu/projects/glove/

Wikipedia:glove.6B.zip, Twitter:glove.twitter.27B.zip

Table 2: Performance comparison among different de-
composition approaches of textual input for CNN, BiL-
STM and NBLR. Some results are based on multiple
independent runs with mean and square bracketed stan-
dard deviation

Method Source Textual Input AUC@ROC AUC@PR MCC F1 Score

CNN

Finance

Word 0.8424[0.0032] 0.2284[0.0125] 0.1451[0.0641] 0.0902[0.0489]
Subword 0.8862[0.0058] 0.3269[0.0164] 0.2774[0.0301] 0.1437[0.0453]

Char 0.9089[0.0008] 0.4132[0.0047] 0.3696[0.0231] 0.3468[0.0423]
Byte 0.9128[0.0013] 0.4256[0.0025] 0.3815[0.0172] 0.3614[0.0312]

News

Word 0.8660[0.0020] 0.4786[0.0067] 0.4328[0.0111] 0.4143[0.0184]
Subword 0.9078[0.0019] 0.5883[0.0057] 0.5277[0.0122] 0.5262[0.0216]

Char 0.9277[0.0026] 0.6550[0.0087] 0.5928[0.0100] 0.6041[0.0128]
Byte 0.9301[0.0007] 0.6634[0.0028] 0.6017[0.0066] 0.6156[0.0110]

Wikipedia

Word 0.9526[0.0028] 0.8202[0.0081] 0.7058[0.0105] 0.7304[0.0130]
Subword 0.9512[0.0032] 0.8144[0.0043] 0.6999[0.0055] 0.7227[0.0090]

Char 0.9461[0.0023] 0.8067[0.0063] 0.6911[0.0065] 0.7153[0.0105]
Byte 0.9483[0.0014] 0.8138[0.0034] 0.6964[0.0034] 0.7210[0.0065]

Twitter

Word 0.8247[0.0083] 0.7174[0.0110] 0.5041[0.0121] 0.6264[0.0180]
Subword 0.8401[0.0027] 0.7332[0.0051] 0.5096[0.0079] 0.6493[0.0102]

Char 0.8465[0.0067] 0.7458[0.0083] 0.5348[0.0164] 0.6516[0.0189]
Byte 0.8568[0.0125] 0.7600[0.0168] 0.5487[0.0207] 0.6678[0.0238]

BiLSTM

Finance

Word 0.8639[0.0009] 0.2801[0.0156] 0.2383[0.0611] 0.1927[0.0904]
Subword 0.8998[0.0115] 0.3921[0.0134] 0.3765[0.0130] 0.3637[0.0333]

Char 0.8834[0.0032] 0.3897[0.0041] 0.3363[0.0847] 0.2954[0.0038]
Byte 0.8923[0.0027] 0.3985[0.0085] 0.3502[0.0057] 0.3020[0.0216]

News

Word 0.8852[0.0036] 0.5214[0.0057] 0.4657[0.0129] 0.4522[0.0371]
Subword 0.9262[0.0022] 0.6356[0.0033] 0.5708[0.0080] 0.5771[0.0204]

Char 0.9250[0.0003] 0.6534[0.0016] 0.5977[0.0006] 0.6112[0.0001]
Byte 0.9269[0.0010] 0.6588[0.0026] 0.6012[0.0037] 0.6137[0.0054]

Wikipedia

Word 0.9631[0.0003] 0.8450[0.0047] 0.7315[0.0061] 0.7598[0.0013]
Subword 0.9608[0.0022] 0.8359[0.0040] 0.7234[0.0059] 0.7512[0.0089]

Char 0.9360[0.0001] 0.7870[0.0007] 0.6665[0.0260] 0.6988[0.0166]
Byte 0.9352[0.0010] 0.7904[0.0042] 0.6773[0.0098] 0.7032[0.0021]

Twitter

Word 0.8429[0.0007] 0.7423[0.0052] 0.5142[0.0149] 0.6362[0.0270]
Subword 0.8624[0.0023] 0.7636[0.0042] 0.5403[0.0036] 0.6758[0.0152]

Char 0.8328[0.0012] 0.7402[0.0085] 0.5152[0.0128] 0.6195[0.0209]
Byte 0.8493[0.0080] 0.7580[0.0069] 0.5495[0.0105] 0.6595[0.0183]

NBLR

Finance 0.9388 0.4893 0.4028 0.3648
News N-grams 0.9501 0.7149 0.6208 0.6206

Wikipedia (Word, Char) 0.9687 0.8674 0.7389 0.7533
Twitter 0.9105 0.8454 0.6280 0.7116

5.4 Results

Tables 2 and 3 compare different representations
for CNN, BiLSTM, NBLR and BERT models.

5.4.1 CNN
Overall, fine-grained approaches outperform
coarse-grained ones clearly. Among all of them,
byte-level representation achieves best perfor-
mance across different datasets. The performance
discrepancy stems from that the former can capture
rare, unknown words, misspelling and morphology
more effectively than the latter. This finding is in
line with the related studies as well (Zhang et al.,
2015; Gillick et al., 2015). The performance gain
is also found to differ among different datasets.
Specifically, the superiority of byte-level inputs
is more evident in Finance and Twitter than that
in News and Wikipedia. To untangle this point,
we categorize all comments and tweets into two
groups based on whether an online post has multi-
byte characters. The single-byte set generally con-
sists of limited ASCII characters, which can be
fully captured by character-level quantization. The
multi-byte character set has a large variety of char-
acters. A much large number of input features are
required to quantize them, which is not always fea-
sible. As shown in Table 1, the overall percentages
of abusive posts, irregular posts and percentage of
abusive in irregular posts as reported in Table 1.
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It’s observed that the abusive percentage in irreg-
ular posts in Finance (3.9%) and Twitter (37.9%)
is higher than the overall abusive percentage (3.1%
and 31.4%). The difference of abusive percent-
age is completely reversed in both News (5.2% vs.
6.3%) and Wikipedia (4.3% vs. 11.7%). The higher
percentage shows stronger signals of irregular text
in indicating abusive language. This actually fa-
cilitates the advantages of using byte-level inputs,
which can model irregular text smoothly.

For Wikipedia, neither character-level nor byte-
level inputs outperform word-level and subword-
level ones. In addition, the performance compar-
ison between word-level and subword-level is re-
versed as well. This discrepancy might result from
the difference of users in Wikipedia dataset in com-
parison to others. In Finance, News and Twitter
datasets, general audience can post comments and
tweets without needing much domain knowledge.
Wikipedia itself is a collaborative knowledge repos-
itory. The dataset includes discussion among users
who participated in its editing, which has some per-
sonal online attacks. Attacks are likely to be caused
by disputes on specific domain knowledge. In this
context, language styles are probably different from
general posts in other media platforms. The per-
centage of abusive in irregular posts is almost one
third of overall abusive percentage. In other words,
the irregular characters are not good indicators of
abusive language. Thus, the advantages of fine-
grained inputs for capturing rare, unknown words
are no longer beneficial.

5.4.2 BiLSTM

Similarly to CNN, byte and subword models per-
form better than character and word ones, respec-
tively. Word and subword models are improved
for BiLSTM in comparison to CNN as well. Both
byte and character models, however, experience
the performance deterioration to different extents,
which leads to the reversal as we observe in Ta-
ble 2. The underlying possibility is that LSTM
cannot handle long sequence properly. For byte
and character, input length has to be much longer
than word and subword to cover input sequences.
It is expected to get performance degraded due to
gradient vanishing and exploding issues. Previous
studies show that byte-level LSTM is the best one
with only length of 60 (Gillick et al., 2015). In this
work, the input sequence is usually a few hundreds.

Table 3: Performance comparison among different de-
composition approaches of textual input with NBLR,
BERT (Bodapati et al., 2019) (SOTA) and enhanced
BERT (pre-training 20 epochs and fine-tuning)

Method Source Textual Input AUC@ROC AUC@PR MCC F1 Score
Finance

Subword

0.9490 0.5133 0.4687 0.4702
BERT News 0.9553 0.7276 0.6525 0.6685

Wikipedia 0.9782 0.8932 0.7837 0.8063
Twitter 0.9157 0.8483 0.6739 0.7726

Finance
Subword 0.9556 0.5484 0.5217 0.5369

Char 0.9479 0.5179 0.4908 0.5014
Byte 0.9498 0.5129 0.4908 0.5028

News
Subword 0.9559 0.7300 0.6451 0.6547

Enhanced Char 0.9519 0.7206 0.6512 0.6662
Byte 0.9529 0.7237 0.6543 0.6712

BERT
Wikipedia

Subword 0.9814 0.9024 0.7933 0.8151
Char 0.9765 0.8897 0.7764 0.8022
Byte 0.9775 0.8919 0.7862 0.8104

Twitter
Subword 0.9335 0.8746 0.6901 0.7811

Char 0.9180 0.8511 0.6721 0.7695
Byte 0.9251 0.8656 0.6869 0.7800

5.4.3 NBLR and BERT
It’s found that linear model NBLR works much
better than advanced models CNN and BiLSTM
as shown in Table 2. The fine-tuned BERT (Bo-
dapati et al., 2019) models developed on standard
text corpus achieves the best performance among
the above algorithms as shown in Tables 2 and 3.
It further demonstrates that the generic language
modeling with reasonable training paradigm could
even benefit abusive language detection greatly.

We also pre-train enhanced BERT models with
subword-, character- and byte-level inputs on abu-
sive text corpus. We can see that enhanced BERT
with subword input is better than BERT model.
The performance gains are much obvious in Twitter
compared to others, which is related to the highest
proportion of irregular text and abusive in them as
shown in Table 1. It’s also observed that byte is
superior to character, which is consistent with the
previous findings.

Table 4: Comparisons for enhanced (E) and BERT
model (SOTA), underlined text is the key part

Case Byte (E) Char (E) Subword (E) SOTA Text
1 0.8174 0.8004 0.2213 0.3329 And Popeye for VP ... F T W.
2 0.8949 0.9574 0.1003 0.1775 I‘ve played a lot of football,and my

brother played quarterback in the
NFL.So suck it,W a n k e r.

3 0.8017 0.0156 0.0061 0.3189 HAHAHAHA...chucky, you’re toast,
fer brains.

4 0.9283 0.1561 0.0028 0.1676 I throw soo much stuff out there. I am
one big walking gimmick and guess
what, you bought into me a lonnnnng
time ago s© u© c© k© e© r©.

5 0.0960 0.3049 0.8882 0.0832 Obama hates me so I hates him
back. But unlike him, I love Amer-
ica. He gets my middle finger, on
both hands.

6 0.1168 0.1833 0.6912 0.3689 India is a toilet...a smelly one at that.
7 0.8041 0.9399 0.8398 0.1003 Isn’t this the same that

said ”at this point, what does it matter”
with BENGHAZI?!!

8 0.4063 0.0770 0.7853 0.1881 Phuque all Abrahamic BASED reli-
gions!

5.4.4 Case studies
In this section, we dive deep into different textual
granularity for enhanced BERT models through
some case studies as reported in Table 4.
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Table 5: Comparisons between MGEL and SOTA

Source Method AUC@ROC AUC@PR MCC F1 Score

Finance SOTA 94.90 51.33 46.87 47.02
MGEL 96.02 (↑1.12) 56.96 (+5.63) 52.10 (↑5.23) 53.21 (↑6.19)

News SOTA 95.53 72.76 65.25 66.85
MGEL 95.91 (↑0.38) 74.27 (↑1.51) 65.20 (↓0.05) 66.16 (↓0.69)

Wikipedia SOTA 97.82 89.32 78.37 80.63
MGEL 98.24 (↑0.42) 90.58 (↑1.26) 79.73 (↑0.36) 81.92 (↑1.29)

Twitter SOTA 91.57 84.83 67.39 77.26
MGEL 93.78 (↑2.21) 88.56 (↑3.73) 71.82 (↑4.43) 79.89 (↑2.63)

Cases 1-2 show that the subword models are
not good at intentional misspellings in compari-
son to both byte and character ones. The obfusca-
tion, however, could be easily defused by byte and
character models since these characters stand to-
gether. Cases 3-4 further demonstrate that the byte
model could be more powerful than the character
model for Emojis and special multi-byte characters
(e.g., three-byte s©). Although they are indeed in-
cluded in the vocabulary of character and subword
models, multi-byte characters (four-byte emojis)
are not likely to get trained reasonably for a good
embedding due to limited samples involving the
same emojis. The byte model, however, is able
to learn a good embedding of partial bytes of the
whole multi-byte characters. This is related to the
character encoding where similar ones are usually
standing together and have many common bytes.
For instance, different emoji smileys have common
3 head bytes [’0xf0’, ’0x9f’, ’0x98’]8. Cases 5-6
are good examples that BERT model is a context-
aware language model. Specifically, all words are
not abusive, but the whole sentence or the combi-
nation of multiple words is offensive. Lastly, cases
7-8 show that it’s necessary to develop enhanced
models from scratch for abusive language.

5.4.5 MGEL performance
Byte and character models are able to detect some
intentionally manipulated challenging cases, albeit
being inferior to subword ones overall. In this
context, we resort to MGEL to integrate NBLR and
different Enhanced BERT models. The ensemble
probability is denoted as p = r3 ∗

[
r1 ∗ p(byte) +

r2 ∗p(char)+(1−r1−r2)∗p(subword)
]
+(1−

r3) ∗ p(nblr) where weights r1, r2, r3 ∈ [0, 1]. We
search the weight space on development set with
step size 0.1. The overall weights r1 = 0.2, r2 =
0.2, r3 = 0.9 are applicable for all datasets. The
performance comparisons are detailed in Table 5.
MGEL marks new state-of-the-art performance for
abusive language detection overall.

8https://getemoji.com/

6 Discussion and Outlook

Although NBLR is inferior to BERT models, the
throughput (request per second) is multiple times
higher due to the simplicity when they were de-
ployed in a service. For one-hot character encoding
on CNN and BiLSTM, we also experiment with
increasing vocabulary sizes (e.g, 200, 300) to in-
clude more useful multi-byte characters based on
odds ratios but it doesn’t work well. This is also
our initial motivation for byte-level explorations.

The enhanced changes that are applied to BERT
are simple to implement and work well in prac-
tice. We are well �����definitely aware that a large
amount of studies on BERT improvement. How-
ever, ����beating competing with the existing BERT
variants for generic language modeling is not our
focus here despite they could be potentially applied
to our problem. For example, ERNIE aims to in-
fuse knowledge into BERT model by masking pre-
defined entities and phrases implicitly (Sun et al.,
2019), which is somewhat similar to our bi-gram
whole-word masking. Our work, instead, focuses
on abusive language understanding and detection
itself. The multi-grained text decomposition analy-
sis also shows that a single language model cannot
cover all aspects of abusive languages.

Recently, byte-level subwords have also been
used in language modeling (Liu et al., 2019; Wang
et al., 2019). In machine translation, byte-level
BPE enables multi-lingual representation more
compact (Wang et al., 2019) and delivers better
performance. In addition to subword, character
and byte, we also experiment byte-level subword
based on unigram language model (Kudo, 2018)
BERT models. Unfortunately, the performance in
our datasets is not as appealing as those reported in
machine translation (Wang et al., 2019).

7 Conclusion

The multi-grained text analysis indicates that byte
and subword outperform character and word re-
spectively in almost all cases. BiLSTM could also
boost performance of word and subword inputs but
deteriorate byte and character ones compared to
CNN. NBLR delivers a competitive performance
even against deep learning models. More impor-
tantly, we proposed an ensemble model, MGEL,
that offers the best performance on the largest abu-
sive language datasets, and significantly improves
over the state-of-the-art hatespeech detection algo-
rithms.

https://getemoji.com/
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