
Hierarchical Focus+Context Heterogeneous Network Visualization

Lei Shi∗ Qi Liao† Hanghang Tong‡ Yifan Hu§ Yue Zhao¶ Chuang Lin‖

Figure 1: OnionGraph interface showing the bibliographic network in the visualization community. (a) Main OnionGraph panel visualizing the
author-paper-venue heterogeneous network. Venues (right column) are expanded into single journal/conference entities; papers (central column)
are expanded by their citation count groups; authors (left column) are expanded by their neighborhood attributes, i.e., the publication profile of
low/medium/high-citation papers. The layout improves PivotGraph grid-like layout [27]. (b) Configuration panel for OnionGraph abstraction. The
current abstraction control specifies the profile of the selected author node in the left column of the main panel. (c) Filter panel which is configured
to only show authors who publish more than 10 papers, and edges which connect author-paper (“authorize” type) and paper-venue (“publish”
type). (d) Legend panel showing the icons and colors used in the current network. (e) The selected node list which includes authors with many
high-citation papers. (f) Details of “Kaufman, A”, all the statistics (e.g., h-index) are computed within the visualization paper dataset.

ABSTRACT

Aggregation is a scalable strategy for dealing with large network
data. Existing network visualizations have allowed nodes to be
aggregated based on node attributes or network topology, each of
which has its own advantages. However, very few previous sys-
tems have the capability to enjoy the best of both worlds. This paper
presents OnionGraph, an integrated framework for exploratory vi-
sual analysis of large heterogeneous networks. OnionGraph allows
nodes to be aggregated based on either node attributes, topology, or
a mixture of both. Subsets of nodes can be flexibly split and merged

∗State Key Laboratory of Computer Science, Institute of Software, Chi-
nese Academy of Sciences. Email: shil@ios.ac.cn

†Department of Computer Science, Central Michigan University. Email:
qi.liao@cmich.edu

‡Computer Science Department, City College, CUNY. Email:
tong@cs.ccny.cuny.edu

§AT&T Labs Research. Email: yifanhu@research.att.com
¶Tsinghua University, Email: zhao-yue11@mails.tsinghua.edu.cn
‖Tsinghua University. Email: chlin@tsinghua.edu.cn

under the hierarchical focus+context interaction model, support-
ing sophisticated analysis of the network data. Node aggregations
that contain subsets of nodes are displayed with multiple concentric
circles, or the onion metaphor, indicating how many levels of ab-
straction they contain. We have evaluated the OnionGraph tool in
two real-world cases. Performance experiments demonstrate that
on a commodity desktop, OnionGraph can scale to million-node
networks while preserving the interactivity for analysis.

1 INTRODUCTION

Information networks are intensively studied nowadays and many
of them are heterogeneous in that their nodes and edges are of dif-
ferent types. Each type can be associated with a few attributes.1
For example, in a bibliographic information network, a node can be
an author with affiliation, a paper with topic, or a venue (i.e., con-
ference/journal) with location. An edge can represent the relation-
ship of citation, authorization, presentation, etc. With this semantic
augmentation, analyzing a heterogenous network can lead to more
insights than its homogeneous counterpart. Besides knowing the
authors in the center of a co-authorship network, it is also possi-
ble to detect the authors with highly cited papers at a prestigious

1Heterogeneous networks are sometimes referred to as multivariate or
multifaceted networks.

conference.
The problem considered here is how to visualize a large hetero-

geneous network in a way that allows a user to perceive and explore
both topology patterns and node/edge attributes attached on the net-
work. Similar to many visualization methods on large homoge-
neous networks [7] [4] [5], we focus on the top-down approach that
presents the network with an initial overview and allows drilling
down to details through interactions. Ultimately, we consider two
problems. First, the summarization problem: how to create the vi-
sual abstraction of a large heterogeneous network with both topol-
ogy and attribute information. For example, the multi-scale visual-
ization by hierarchical graph clustering [7] is one popular approach
when only topology information is considered. Second, the navi-
gation problem: which interaction model to apply to guide the user
from the initial visual abstraction to analyzing the low-level hetero-
geneous network patterns. For example, in the multi-scale network
visualization, hierarchy-traversing is a typical method for exploring
a large network structure.

Despite a wealth of literature in the network visualization re-
search [7] [14] [4], only a few are designed for heterogeneous net-
works. PivotGraph [27] and OntoVis [21] are early works address-
ing such needs, but none of them focus on the visual exploration
of a large heterogeneous network. In fact, achieving such a goal
is nontrivial. First, previous methods to cluster the network for vi-
sualization are based on either topology or attribute information,
but not both. Second, the visual summary based on clustering
should present interpretable results in that there is a clear mean-
ing for each cluster. For example, by topology-based graph clus-
terings, each cluster indicates a group of nodes with denser inter-
nal connections than external ones. Nevertheless on the heteroge-
neous network, a straightforward method to cluster a dense group
may be inappropriate because dense groups can have rather diver-
sified internal attribute distributions. Third, traditional clusterings
on single-source information, either topology or attribute, gener-
ate self-contained local structures, making the hierarchy-traversing
interactions valid. Nevertheless, in navigating heterogeneous net-
works, the cross-cluster connections are sometimes more important
than the internal ones, in which case the hierarchy-traversing inter-
action model may not be the best choice.

In this paper, we present OnionGraph, an integrated framework
for exploratory visual analysis of large heterogeneous networks
2. OnionGraph creates five hierarchies on the network, from the
top/coarsest-level heterogeneous abstraction to the bottom/finest-
level per-node granularity, as shown in the top-left hierarchy control
panel of Figure 1. The main OnionGraph view, as in the center of
Figure 1, depicts a network by OnionGraph abstraction after a few
navigation operations. Each node group in the view is associated
with a separate or shared abstraction profile customized by user.
For example, the selected node group in Figure 1 (in dark-red) has
the same abstraction setting as the other three author groups in the
same column, after an expansion operation from their shared par-
ent node. The OnionGraph abstraction can be further simplified by
adding node/edge attribute filters, so that the interesting part of the
network is kept and enlarged for detailed analysis. A list of selected
network nodes is shown in the center-right part of the OnionGraph
interface, along with a content panel underneath, displaying details
of a particular node.

This paper has three major contributions. First, we propose a
suite of clustering algorithms organized in a top-down manner to
generate hierarchies over the heterogeneous network. The algo-
rithms explicitly combine the topology and attribute information
while guaranteeing a finer granularity as the user drills down to a

2There is another Onion notation in graph drawing literature [24]. How-
ever, both the visual metaphor and the usage are quite different. This previ-
ous notation is designed for tree-like hierarchical graphs and applied mostly
in software visualization such as drawing UML class diagrams.

lower hierarchy. Second, we introduce the “onion” visual metaphor
to represent the basic node aggregation in the resulting heteroge-
neous network abstraction. Hierarchy information is revealed by
drawing a certain number of circles on the node. Modified grid-
based and force-directed layout algorithms are proposed to map the
OnionGraph to the screen space. Third, we develop the hierarchical
focus+context interaction model in navigating OnionGraph abstrac-
tions. Users can determine the abstraction setting on each group of
nodes to generate a fully customized heterogeneous network visu-
alization, which can potentially reveal novel patterns. A typical
interaction trail contains no more than a few double-clicks.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related work. Section 3 gives an overview of the Onion-
Graph framework and the hierarchical focus+context interaction
model. Details on the algorithms and the visualization design are
given in Section 4 and Section 5 respectively. Section 6 presents
two case studies with OnionGraph. Finally, Section 7 concludes
the paper.

2 RELATED WORK

The literature on heterogeneous network visualization can be
roughly classified into relationship visualization and attribute vi-
sualization. The former generally inherits the node-link graph
metaphor, while the latter is mostly built on statistical charts over
selected attributes.

2.1 Relationship Visualization

Wattenberg pioneered PivotGraph [27], which is an attribute-centric
node-link visualization of heterogeneous networks. PivotGraph
leverages a roll-up operation to pivot the nodes with the same value
on one or two attributes into aggregations. The attributes used
can be picked manually to generate different PivotGraph views.
In a data selection operation, the network can be reduced to only
show node aggregations with specified attribute values. Combining
the roll-up and selection operations, PivotGraph supports power-
ful attribute-centric analysis over networks. OnionGraph shares the
similar idea in the first two levels of abstraction on node attributes.
Beyond the static attribute selection in PivotGraph, OnionGraph
allows dynamic aggregation of different portions of the network
by separate attributes, which provides more flexibility in solving
exploratory network analysis tasks. On lower-level abstractions,
OnionGraph’s motivation is fundamentally different. Rather than
aggregating the network nodes solely by attribute values, Onion-
Graph combines the attribute and topology information.

In OntoVis [21], Shen et al. proposed the method of semantic
and structural abstraction based on the ontology graph of heteroge-
nous social networks. On attribute analysis, network is filtered by
selected nodes in the ontology graph. On structural abstraction, On-
toVis provides methods such as degree-one node and duplicate path
reductions. OnionGraph is similar to OntoVis in that it also consid-
ers both the network semantics and topology. However, the goal
is different. OntoVis focuses on visually pruning a large heteroge-
neous network into a smaller and simpler abstraction for static vi-
sualization, while OnionGraph extends to support navigation from
the top-level abstraction.

There are several other works creating the static overview of
heterogeneous networks, but none of them allow hierarchical vi-
sual exploration, which becomes essential when the network size
increases significantly. Semantic Substrate [23] proposed a user-
defined layout method to place nodes in non-overlapping regions
according to their attributes. GraphDice [8] applied a scatterplot
visual metaphor to the overview of multivariate networks. FacetAt-
las [10] extracted the multifaceted entities and relationships from a
collection of documents. By applying a density map based visual
metaphor, both global and local connection patterns are revealed

for analyzing the rich text corpora. Each entity in FacetAtlas is en-
coded by one visual node explicitly, while OnionGraph introduces
node aggregation which is more suitable for large networks.

2.2 Attribute Visualization
Attribute visualization is an important subject in network visual-
ization tasks [17], e.g. finding the node/link with certain attribute
value. These tasks involve detailed inspection of network attributes,
which demands a design significantly different from traditional
node-link visualizations. NetLens [15] is an innovative interface
built for such needs. Based on a content-actor data model, NetLens
creates a series of statistical charts (e.g. bar charts) upon attribute
queries. The content and actor views are shown side-by-side, al-
lowing filters and data flows within and between them. Complex
queries are interactively customized to meet the user’s analysis re-
quirements. FacetLens [18] exhibits a similar design, but introduces
a linear facet to enable navigation and comparison on ordinal di-
mensions (e.g. time). FacetLens also allows a pivot operation to
drill down to node details after various filters are applied.

Due to the complexity to query network attributes, there is a need
to manage, retrieve and traverse user’s analysis history. GraphTrail
[11] is a visualization system designed for such a goal. By linking
sequential network attribute views into a trail, GraphTrail enables a
user to surf within the analysis process. The basic mechanism only
requires simple drag-and-drop operations.

2.3 Interaction Methods
On manipulating network hierarchies, typical interactions include
the hierarchy navigation and editing. In [12], Elmqvist and Fekete
classified the hierarchical aggregation based visualization into five
types: above traversal, below traversal, level traversal, range traver-
sal and unbalanced traversal. The navigation methods generally
work to change the hierarchy setting within each type of the clas-
sification or switch between two different types. In [7], Auber et
al. proposed the method to start from an above traversal and lever-
age an overview+detail navigation to create a below/range traversal
view on the focus. ASK-GraphView [4] allows the user to click on
each node aggregation to expand with any traversal type and gen-
erates an unbalanced traversal. Similarly, Topological Fisheye [13]
enables an interactive switching among unbalanced traversals by
specifying some focuses on the network. GrouseFlock [6] provides
high-level hierarchy modification operators based on the low-level
delete and merge operations.

The focus+context interaction is a classical technique for net-
work visualizations. The hyperbolic visualizers [16] allow a user to
focus on some details while preserving the context of the entire net-
work. Topological Fisheye [13] achieves the similar level-of-detail
rendering by a pre-computed multi-level coarsening tree. In [26],
Van Ham and Perer proposed a method to start the network analysis
from a search, where the focus is essentially the search result. Net-
work context is expanded by a Degree-of-Interest diffusion from
the initial focuses.

3 ONIONGRAPH OVERVIEW

3.1 Principle
Stratified Semantic+Topological Abstraction. As mentioned be-
fore, neither the attribute-based nor the topology-based network vi-
sualization method alone can well serve the exploratory analysis
tasks such as “Is there any VAST paper heavily cited by both TVCG
and CGF papers?”. Moreover, a flat combination of these two gen-
erates complex and fragmented network abstractions. For example,
partitioning a social network according to both the user’s commu-
nity and his profile leads to many tiny clusters. In OnionGraph,
we introduced a stratified semantic+topological principle. In high-
levels, the large network is aggregated by a combination of seman-
tic information (node type and attributes). Interesting portions of

(Heterogeneous,
Attribute-based)

Focus L1

Detail

Focus L3

Focus L2

Detail

Detail
Focus L1

Focus
L3

ContextFocus
L2

I/II

III

IV

V

Figure 2: OnionGraph structure featuring five hierarchies below the
original network: networks by semantic aggregations (SA) on node
type (heterogeneous abstraction) and node attributes, Relative Reg-
ular Equivalence (RRE), Strong Structural Equivalence (SSE), and
the node-level network in the finest granularity. In each hierarchy, the
network can be expanded on certain focuses (red regions) into their
lower-hierarchy details (blue regions).

the abstraction can be drilled down in-situ by exploiting topological
features. After steps of user navigation, a stratified network view
having different levels of abstraction is created on demand to serve
the complicated heterogeneous network analysis tasks. Sketched
examples are given in Figure 2.

The primary goal of the stratified framework is to achieve the
level-of-detail viewing: each lower-level hierarchy should present
significantly richer network complexity than its parent hierarchy.
This accounts for why semantic aggregation is placed on top of
topological methods, and also the design of the 5-level structure
(Section 3.2). With appropriate node attribute selected and an op-
tional binning operation, semantic aggregation can always create a
neat abstraction of the entire network. On the other hand, most real
networks have limited topology redundancy. Compressing a large
network purely by topology methods (e.g. structural equivalence)
can lead to another cluttered network. Also, observations on real
network data show that the topologically identical network nodes
can have very high probability to possess the same node attributes,
while the opposite is in most cases not true: the identity on node
attributes has little to do with their topology positions.

Unbalanced Exploration. Most current hierarchical network
visualization methods assume a pre-computed hierarchy. Users can
only follow existing trails to explore the network and discover pat-
terns. This places many limitations on the visual analytics capa-
bility. Moreover, the network hierarchies, such as those by graph
clusterings, are often sensitive to the parameter applied. Users can
hardly understand why or why not some parts of the network are
grouped together.

In contrast, OnionGraph features an unbalanced visual explo-
ration design on heterogeneous networks, as shown by the trail in
Figure 2. First, we apply a few well-defined network abstraction
algorithms, each resulting in an unambiguous partition of the net-
work. Users are guided by algorithm heuristics, so that they can
understand the output of each step of the exploration. Second, sev-
eral exploration steps can be spliced on the fly, then users can cus-
tomize the analysis flow and generate the stratified view on demand
according to different tasks and data characteristics.

Local Refinement + Global Filtering. In exploring the net-
work with OnionGraph, each higher-level node is expanded in-situ
into lower-level sub-nodes, leading to a local refinement approach.
Following the visual information seeking mantra [22], OnionGraph

also implements attribute filters on network nodes and edges to let
the user bypass less important information. By a straightforward
design, a separate filter can be attached to the profile of each local
refinement (abstraction). However, in reality users can hardly re-
member the detail of each filter. It is hard to restore the network
that is filtered entirely, because the filter setting only governs the
local network and can not be accessed for any changes. In Onion-
Graph, we apply a global node and edge filtering mechanism that
operates on the entire network. Users specify their filtering rules
without selecting a local network in advance. The filtered network
is then abstracted according to OnionGraph settings.

3.2 OnionGraph Structure

Figure 2 shows the 5-level hierarchical structure of OnionGraph.
The design features the semantic+topological principle: the seman-
tic aggregations (SA) in level-I and level-II are purely semantic, the
level-III Relative Regular Equivalence (RRE) combines semantic
and topological information, the level-IV Strong Structural Equiv-
alence (SSE) is mostly topological.

In more detail, level-I abstraction groups the original network
by node type, level-II abstractions consider the categorical/nominal
node attributes. Once a set of attributes are selected, the network is
aggregated by grouping all the nodes with the same value on these
attributes together. The network links are formed accordingly.

In level-III, RRE method works on the higher-level node groups
to extract role sub-groups. Intuitively, RRE considers the neigh-
borhood information of each individual node. The network role is
defined recursively in that, the nodes with the same set of roles in
their neighborhood are considered with the same network role. In
our approach, the initial role partition is constructed through the
semantic aggregations, then RRE-defined role can be computed by
the set of attribute values in each node’s neighborhood.

SSE method in level-IV is similar to RRE. The difference lies in
the definition of role partition. SSE requires the network nodes with
the same role to have exactly the same set of neighborhoods, more
strict than RRE which only considers the role of neighborhoods. In
the finest node-level (level-V), each SSE node group is split into
individual network nodes, rolling back to the input network granu-
larity.

Built on the 5-level stratified design, OnionGraph provides a
wide spectrum of flexibility in customizing the optimized network
hierarchies for analysis. The semantic aggregation can apply a man-
ually chosen attribute set which creates sub-hierarchies in level-II.
Both RRE and SSE role partitions can specify directed, weighted
and fuzzy configurations.

3.3 Hierarchical Focus+Context Exploration

OnionGraph achieves versatile visual analysis capability through
the hierarchical focus+context interaction design. As shown in the
bottom-right part of Figure 2, by interactive explorations, users can
create multiple, hierarchical focuses over the network. Each fo-
cused sub-network is associated with an independent abstraction
profile. The profile specifies both the current network hierarchy
and the abstraction setting. Drill-down and roll-up operations are
provided so that the user can manipulate the network hierarchies
and customize his own favorite network abstraction for a specific
task.

In OnionGraph, each focused sub-network is expanded in-situ
in a focus+context manner. The entire network view can juxta-
pose sub-networks with multiple hierarchy settings. This is quite
different from the overview+detail network visualizations and the
hierarchy traversing approaches that do not preserve context. More
details on these operations are introduced in Section 5.2.

v1 v1v2 v2

v1 v2v1 v2

P N v1 P N v2

P0 v1 P0 N v1

P0 D

P0 v2 P0 N v2

D v2D v1

v3

v4

v5

v6
P0 v1 N v1 v2 v3 v4

P0 D

P0 v2 N v2 v1 v5 v6

Figure 3: OnionGraph network partitions (undirected case). In each
subfigure, node fill color indicates the partition index: (a) semantic
aggregation, the selected attribute value is labeled on the node; (b)
a regular equivalence partition; (c) the regular equivalence relative to
the semantic aggregation in (a); (d) strong structural equivalence.

4 ALGORITHM

We first formalize the terminologies used throughout the algorithm
description.

Heterogenous Network. Let G = (V,E) be a directed and
weighted heterogeneous network. V = {v1, ...,vn} and E =
{e1, ...,em} denote the node and link sets. W denotes the adjacency
matrix where wi j > 0 indicates a link from vi to v j, with wi j de-
noting the link weight. On each node vi, N+(vi) = { j|wi j > 0}
and N−(vi) = { j|w ji > 0} indicate the outbound and inbound
neighborhood set, both representing its connection pattern. Let
D = {d1, ...,ds} be the type and attribute of network nodes in G,
with s dimensions in total. D(vi) = {d1(vi), ...,ds(vi)} denotes the
type/attribute values of node vi, with dk(vi) indicating the value in
the kth dimension.

Network Partition. Let P : V → {1,2, ..., t} be a partition (role
assignment, coloration or grouping interchangeably) of network G
into t sub-groups of nodes. P(vi) indicates the partition index of
node vi.

The OnionGraph algorithm to create a network abstraction is
equivalent to finding a partition of the network according to the
abstraction settings. Below we first define various network parti-
tions in OnionGraph, then describe the algorithm implementation
to compute such partitions, and finally report its performance.

4.1 Semantic Aggregation
Semantic Aggregation (SA) creates a partition of the network by a
selected set of node type or attributes. Formally, for any nodes vi
and v j in a network G, given the selected attribute set D ⊆ D, the
semantic aggregation network partition P satisfies:

D(vi) = D(v j)⇔ P(vi) = P(v j) (1)

Figure 3(a) illustrates a partition based on the node attribute
having values “I” or “II”. The initial view in OnionGraph is ex-
actly the network aggregated by a primitive node type, e.g., pa-
per/author/venue in the bibliographic network, as shown in Figure
6(a). Multiple network hierarchies can be created when the user
adds node attributes to the selected set.

4.2 Relative Regular Equivalence
The original regular equivalence (role equivalence) concept [28] is
defined recursively on the network node by the same set of neigh-
borhood roles. For any nodes vi and v j in a network G, a regular
equivalence network partition P satisfies:

P(vi)=P(v j)⇒P(N+(vi))=P(N+(v j)) and P(N−(vi))=P(N−(v j))
(2)

However, directly applying regular equivalence on a network
will lead to many possible partitions. Figure 3(b) gives a partic-
ular case. In the extreme, the identity partition (every node serves

a different role) and the complete partition (every node serves the
same role) are both regular. It is hard to find an appropriate regu-
lar equivalence partition in real usage. Here we propose a practical
solution to apply Relative Regular Equivalence (RRE), which can
work on top of the existing semantic aggregation partition. RRE
explicitly derives the maximal regular equivalence partition by re-
fining the semantic partition. Mathematically, the RRE partition P
over a semantic partition P0 satisfies:

P(vi) = P(v j)⇔ P0(vi) = P0(v j) and
P0(N+(vi)) = P0(N+(v j)) and P0(N−(vi)) = P0(N−(v j))

(3)
Figure 3(c) gives an example of the RRE partition relative to the

semantic partition in Figure 3(a).

4.3 Strong Structural Equivalence
More stringent to the regular equivalence, Strong Structural Equiv-
alence (SSE) partition [19] requires the network nodes to have ex-
actly the same neighborhood set. For any nodes vi and v j in a
network G, the SSE network partition P over a RRE partition P0
satisfies:

P(vi) = P(v j)⇔ P0(vi) = P0(v j) and
N+(vi) = N+(v j) and N−(vi) = N−(v j)

(4)

Besides the standard definition, there are a few variations of
RRE/SSE partitions. The undirected RRE/SSE (Figure 3) considers
the union of inbound and outbound neighborhood sets, the weighted
RRE/SSE considers the number of neighborhood role occurrences
(RRE) and the weight of the connecting edges (SSE). These options
are included in OnionGraph design and configured by user.

4.4 Fuzzy Equivalence
In many practical cases, strict RRE/SSE partitions lead to an ex-
tensive number of groups since real-life networks are too com-
plex to have strict structural equivalences. We introduce the fuzzy
RRE/SSE partition method which allows a user to control the num-
ber of partitions he wants out of a higher-level aggregation.

The first step is to represent each node vi by its neighborhood
vector R(vi) = {ci1, ...,cit ,c1i, ...,cti}. For RRE, t is the number
of roles out of the upper-level semantic aggregation. For SSE, t is
the number of nodes in the network. For unweighted RRE/SSE,
ci j(c ji) = {0,1} denotes whether the jth role/node is present in
the outbound (inbound) neighborhood set of node vi. For weighted
RRE, ci j(c ji) denotes the number of occurrence of the jth role in
the neighborhood of node vi. For weighted SSE, ci j(c ji) denotes
the weight of the edge connecting vi and v j . In another setting, the
neighborhood vector is normalized by ci j = ci j/∑ j=1,..,t(ci j +c ji).

Next, over all the nodes to be partitioned, a pairwise dissimilarity
score is computed. Though there are many candidate criteria, we
choose the Euclidean distance, because we care the dissimilarity in
both orientation and magnitude. Also, the Euclidean distance fits
our clustering algorithm well.

Finally, to compute fuzzy equivalence partitions, we apply the
k-means clustering algorithm [20]. Note that another possible so-
lution is to set a threshold over the pairwise node similarity score,
create a similarity graph by pruning the links below such threshold,
and compute the fuzzy groups by graph clustering. However, after
a few informal user studies, we found that normal users can hardly
understand the threshold setting and the resulting output. In con-
trast, the only parameter to set in k-means is the number of clusters
which is a traceable output of the user interaction.

4.5 Implementation and Performance
For deterministic OnionGraph abstractions, we introduce a unified
method to compute the partitions at all five levels. The core con-
cept is the design of a row vector, representing both the semantic

“[17788] [(Gender) = (Male)] [-n:1 | …… | -1:2 | 1:5 | …… | n:3]”

Node Semantics
SA/RRE/SSE

[(Attribute/Type List)
= (Value List)]

Node Identifier
NG Only

[(Node Index)]

Node Topology
RRE/SSE

[Neighbor (Role) Index : Weight | ……]

Figure 4: Row vector design in OnionGraph implementation. NG =
per-node group.

Table 1: OnionGraph network abstraction performance (SA).

Dataset Setting #Node #Link Time(s)

VASTC-2012 N/A 2596 36669 0.058

Vis-Bibli. N/A 20615 106316 0.22

Twitter N/A 306126 1424427 2.262

Honeypot N/A 1051595 1158150 12.055

and topological information on each node. As shown in Figure
4, the row vector is composed of the node attribute (type) field,
the neighborhood relationship, as well as an explicit node identifier
when the network is partitioned into individual nodes. The exten-
sions of partition algorithms, e.g., directed and weighted partitions,
are supported by design. Finally, the network partition is achieved
through an appropriate hash function over the row vectors of all the
nodes. The overall implementation has a computational complexity
of O(m+dn), where n, m and d are the number of nodes, links and
node dimensions of the input heterogeneous network. 3

The fuzzy equivalence computation using the k-means cluster-
ing has an intrinsic complexity of O(k ·n ·d · l). k is the number of
desired clusters, normally set to a small value for an effective visu-
alization. l is the number of iterations in the computation, generally
small for most graphs. n is the number of nodes in the network. d
is the maximal number of dimensions of the neighborhood vector.
For fuzzy RRE, d equals the number of possible values on the cur-
rently selected attributes, and is in most cases bounded. For fuzzy
SSE, d = n. Therefore, the fuzzy RRE computation is slower than
the deterministic version of RRE but still leads to a linear complex-
ity. Fuzzy SSE will be quadratic to the number of nodes and is very
slow for large networks. However, during the navigation process,
the fuzzy SSE operation can still be viable depending on the size of
the sub-network to be expanded.

We evaluate OnionGraph performance in terms of the net-
work abstraction time on a Windows desktop (Quad-core Intel
Xeon@3.30GHz with 6GB of memory). Four heterogeneous net-
work data sets from medium to large size are studied: VAST
2012 mini-challenge II traffic network [1](2596 nodes), the bibli-
ographic network of the visualization community (20615 nodes), a
Twitter retweet network from KDD Cup 2012 [2](306126 nodes)
and a Honeypot security network from the VizSec community
[3](1051595 nodes). All the experiments are conducted in the
worst-case scenario, i.e., operating over the entire network. 10 tri-
als are issued for each entry and the average time is taken as the
result..

The abstraction time of SA, RRE and SSE partitions are given in
Table 1, Table 2 and Table 3 respectively. Results suggest that our
theoretical analyses correspond well with the actual performance.
The completion time of the deterministic version of all three parti-
tions is almost linear to the number of nodes and links, regardless of
the directed and weighted setting. The slowest SSE partition com-
pletes in 27 seconds on a network with a million nodes and links,
still viable for a serious analysis. In contrast, the fuzzy version of
the partitions only receive a moderate penalty on RRE, but is too
slow for SSE even over a 20000-node network.

3In OnionGraph, network data is stored by adjacency lists, so that scan-
ning the links has exactly an O(m) complexity.

Table 2: OnionGraph network abstraction performance (RRE).

Dataset Setting #Node #Link Time(s)

VASTC-2012 undirected 2596 36669 0.185

Vis-Bibli. undirected 20615 106316 0.746

Vis-Bibli. directed 20615 106316 0.561

Vis-Bibli. weighted 20615 106316 0.46

Vis-Bibli. fuzzy (#C=5) 20615 106316 1.042

Twitter undirected 306126 1424427 4.598

Twitter fuzzy (#C=5) 306126 1424427 7.076

Honeypot undirected 1051595 1158150 19.902

Honeypot fuzzy (#C=5) 1051595 1158150 59.083

Table 3: OnionGraph network abstraction performance (SSE).

Dataset Setting #Node #Link Time(s)

VASTC-2012 undirected 2596 36669 0.253

Vis-Bibli. undirected 20615 106316 1.157

Vis-Bibli. directed 20615 106316 1.325

Vis-Bibli. fuzzy (#C=5) 20615 106316 111.891

Twitter undirected 306126 1424427 12.203

Honeypot undirected 1051595 1158150 27.431

5 VISUALIZATION

Figure 1 gives an overview of the OnionGraph interface. It is com-
posed of three parts: OnionGraph network visualization in the cen-
ter (Section 5.1), the control/filter panel on the left and the leg-
end/list/detail panel on the right (Section 5.2).

5.1 OnionGraph Visual Metaphor

A typical OnionGraph visualization is shown in Figure 5. Each
colored node represents a group of original nodes from the under-
lying network. The node size encodes the number of individual
nodes inside the node group. The initial abstraction aggregates all
the nodes by their node types (“author”, “paper” and “venue” in
this figure), as indicated by the icon on the top-right part of each
node. The node group in the top-level heterogeneous abstraction is
displayed by a filled node, e.g., the spring-green node in the cen-
ter of Figure 5, representing all 9557 papers. All the other nodes
in this figure are expanded from the top-level. They are drawn by
the “onion” metaphor composed of several concentric circles. The
number of circles indicates the abstraction hierarchy: the semantic
aggregation has three circles (venue nodes in Figure 5), RRE has
two (author nodes in Figure 5), SSE has one, the individual node
only leaves a solid dot. Upon the top-down exploratory analysis,
the visual complexity of each node group is reduced as the number
of node groups increases, so as to balance the overall complexity of
the OnionGraph view.

Node color in OnionGraph is determined by the type/attribute
values of each node group. In Figure 5, initially three colors (yel-
low, spring-green, Indigo) are picked uniformly on color hue. After
the expansion of the venue node into sub-nodes, four new colors
are assigned with linear hue and saturation offsets from the Indigo
color, as shown by the legend in the bottom-left part of Figure 5.
Node labels by default display the value of currently selected node
type/attributes. When a node group contains only one node, a title
is also shown in the label. The selected nodes are drawn with dark-
red outlines and labels, coupled with a “+/-” sign upon hovering to
indicate the lower/upper level to explore. The neighborhood of the
selected nodes and their connecting links are drawn in dark-orange
(Figure 1). The link thickness and label encode the number of indi-
vidual links between the groups. Different from ordinary networks,
OnionGraph usually has a loopback link on each node group indi-
cating the internal connection, as shown by the arc above the node.

Figure 5: An OnionGraph network visualization of the author-paper-
venue bibliographic network in the visualization community. Three
author groups indicate different connection patterns: normal authors
with co-authors and publications, special authors who only write
single-authored papers, and anomalous authors without a publica-
tion (potential errors in the data set). Four venue groups indicate the
conferences/journals on different topics.

In OnionGraph visual encodings, most critical network mea-
sures (e.g. node/link group size) are not linearly mapped to the vi-
sual channels. We apply normalizations to favor smaller node/link
groups, so that they are still visible given the existence of very large
groups. Note that, the normalization is done on a per-type basis for
both nodes and links. The largest venue node is of the same size as
the largest paper node despite a small number of venues.

5.2 Interaction
OnionGraph interactions allow users to select a portion of interests
in the network, specify a different abstraction profile and finally ex-
ecute to access the finer/coarser-grained visual representation. The
network selection is supported in multiple ways, through single-
clicks on network nodes, rubber band selection/deselection, and ctrl
plus single-click to select a node set with the same abstraction pro-
file. The abstraction profile is configured in the control panel on
the left side of the interface. The control panel includes the abstrac-
tion level control, attribute multi-selection and several switches in-
dicating the abstraction settings, e.g., directed, weighted and fuzzy
RRE/SSE. The selected sub-network is processed by clicking the
abstract button. In another usage, users can double-click on the se-
lected node set in the main network view to expand to the next level
abstraction. When the context is set to the “collapse” mode, the
selected node set is re-grouped into the upper level abstraction.

In the top menu of the OnionGraph interface, configurations such
as the layout algorithm, network node/link visual encoding can be
accessed. OnionGraph also allows another neighborhood charting
mode. As shown in Figure 1, each node group aggregated by RRE
is drawn by a chart instead of the onion metaphor, showing the
distribution of attribute values in the node’s neighborhood. The
bottom-left filter panel allows the user to plug in node attribute fil-
ters on the network. The OnionGraph abstraction is executed over
the filtered network. On the network link, a simplified mechanism
is applied. Only filtering over the link type is allowed by a multi-
checkbox interface. The rightmost part of the OnionGraph interface
shows network details upon visualizations and interactions. The
top-right panel displays the node legend indicating the icon/color
coding of each node group in the network. The center-right panel
displays the list of nodes currently selected in the main view. Upon
choosing one node in the list, the node attributes are displayed in a
key-value table in the bottom-right panel.

5.3 Network Layout
On OnionGraph layout, we introduce two major algorithms. The
first is an improved PivotGraph grid-based layout [27]. The ini-

Figure 6: Visualization bibliographic network analysis: (a) Initial view;
(b) Venues expanded; (c) Papers expanded by citation categories.

tial PivotGraph layout explicitly selects two node dimensions and
places each node by its value on both dimensions. However on
OnionGraph, there can be more than one abstraction settings, each
managing one part of the heterogeneous network. Applying two
global node dimensions of the same abstraction profile can be in-
adequate for other parts of the network. In our implementation,
we improve the algorithm by picking only one global dimension,
i.e., the node type, which is mapped to the X axis of the layout.
After that, each group of nodes with the same abstraction profile
select their own second node dimension on the Y axis. As a re-
sult, the OnionGraph abstraction with multiple profiles can have a
uniform layout, as shown in Figure 1. When certain part of the
network is expanded with a third/more dimension or by RRE/SSE
abstraction, the resulting sub-nodes are placed vertically within the
grid of the upper-level node. The grid-based layout works for most
OnionGraph settings, though does not guarantee an efficient use of
space. To compensate this issue, we also implement the classical
force-directed layout which optimizes the space utilization and also
displays the network topology.

6 CASE STUDY

6.1 Academic Network
We apply OnionGraph to analyze the bibliographic network in the
visualization community. The data set was extracted from Arnet-
Miner database [25]. It contains the paper information of 9 major
visualization conferences and journals, including SciVis, InfoVis,
VAST, TVCG 4, etc. Each paper entry includes title, author, pub-
lication venue, date, citations, keyword, abstract, etc. We built the
heterogeneous bibliographic network with three major node types:
11049 authors, 9557 papers and 9 venues. Five types of links are
identified: the co-authorships among authors, the citations point-
ing from a later paper to an earlier paper, the author-paper affilia-
tion from the author to his papers, the publication from a paper to
a venue, and the presentation of an author in a venue (due to the
paper), summing up to 106316 links in total. More attributes are

4TVCG/CGF/CG&A papers belonging to conference proceedings are
manually extracted and categorized to their original conference venues.

extracted on the data set: the papers are classified into 10 topics us-
ing Latent Dirichlet Allocation [9] on their title+keyword+abstract
contents, with manually assigned topic labels; each author is com-
puted an h-index from his paper citations in the community.

We invited a senior visualization researcher to use our tool to ex-
plore the network and gain insights. He was provided with the de-
fault overview in the heterogeneous abstraction level showing the
relationships among three node types, as shown in Figure 6(a). The
link thickness indicates the total number of co-authorships, cita-
tions, etc. He proceeded to expand the venue group by venue name
under the semantic aggregation level and obtained Figure 6(b). The
layout was changed to the grid-based algorithm for clarity. The
venues with the highest number of papers are CG&A and CGF,
which both publish more than 2000 papers. To analyze the cita-
tion performance of these venues, he then expanded the paper node
into three sub-nodes by their citation counts: low-citation (< 10),
medium-citation (10 ∼ 100) and high-citation (> 100). He also
switched the mapping of link thickness to the average number of
links in a link group, e.g., the probability of each paper published
in a venue, which is more relevant to the academic performance.
From Figure 6(c), he found that though CG&A and CGF published
a lot of medium and high-citation papers, their shares in these two
groups are lower than those in the low-citation papers. In compar-
ison, SciVis and TVCG (focused node in the figure) have dramatic
increases in their shares of medium and high-citation papers. In
the same figure, he applied a filter to get rid of the authors with low
publications (≤ 10 paper). The resulting author group contains only
394 active people in the community. After that, he conducted anal-
ysis on the authors’ citation performance. By a lower-level fuzzy
RRE abstraction, the active authors were classified into four sub-
groups, according to their publication numbers in different citation
categories, as shown in Figure 1. The onion metaphors on the au-
thor nodes were switched to the neighborhood charts to illustrate
their distribution patterns. The sub-group with the largest author
icon indicates 309 active authors whose publications include a few
low and medium-citation papers and almost only one high-citation
paper. The second largest group contains 75 authors with signifi-
cantly more low/medium-citation papers. The next group (focused
node in the figure) probably indicates long-standing fellows in the
community, 7 authors who published 41 low, 48 medium and 5
high-citation papers on average. Interestingly, there is another small
group (3 authors) who published 75 papers on average, but only 6
of them are medium/high-citation papers.

6.2 Host-User-Application Communication

Host-User-Application (HUA) network is generated in a typical lab
setting. There are three (four) basic node types: H node denotes the
host connectivity, which is further partitioned into internal hosts in
the Intranet and external domains in the Internet. U node denotes
the user connectivity chaining (usr). A node denotes the application
connectivity (app).

We recruited a network administrator to analyze his own lab
traces with OnionGraph (we have anonymized the host IP and user
ID for privacy issues). He started with the typical HUA network
in Figure 7(a). From the graph, he found that there were 128
users logged on 601 internal hosts running 298 unique applications,
which connected either internal hosts or 2802 external domains.

He had a few interesting observations when moving from the
initial “heterogeneous groups” to “RRE groups” on each node type.
First, the app nodes were split into five sub-groups, as shown in Fig-
ure 7(b) displayed by neighborhood charts: 1) the majority of apps
(217) connected to only internal hosts by users (focused node in the
graph); 2) 6 apps connected to only external domains by users; 3)
69 apps connected to both internal hosts and external domains by
users; 4) 5 apps did not make network connections; and 5) one app
run by an unknown user talked to a few internal hosts. Type-1 apps

(a) HUA Overview (b) RRE on app nodes (c) RRE on user nodes
Figure 7: HUA communication network visual analytics.

contain predominantly scientific computing programs while Type-
2 and Type-3 have significantly more generic network applications
such as ssh, firefox, ftp, etc. In particular, Type-5 node containing
only one app (wireshark) is clearly suspicious, possibly leveraged
by a malicious user to sniff packets on the network. Second, the
user node had been divided into two groups (Figure 7(c)): 127 users
that had run apps to connect to other computers; and the only user
who never ran apps. The Type-1 users are primarily enterprise users
who are allowed to run scientific programs. The Type-2 user is the
system administrator. It is clear that normal users and privileged
users have distinguished activity patterns.

7 CONCLUSION

OnionGraph is a visual analysis framework for the exploration of
large heterogeneous networks. It is realized by scalable algorithms
creating attribute-based aggregations and various structural equiv-
alence network partitions. By combining semantic and topological
information for a hierarchical abstraction, OnionGraph enables the
level-of-detail viewing of heterogeneous networks. The navigation
and filtering interactions in complement to each other are shown to
be effective in flexibly controlling the analysis process with Onion-
Graph. Evaluation results in case studies demonstrate that Onion-
Graph is useful in many heterogenous network analysis scenarios
where the task is exploratory and involves both entity-centric and
structural problem-solving.

REFERENCES

[1] IEEE VAST Challenge, 2012. http://www.vacommunity.
org/VAST+Challenge+2012.

[2] KDD Cup, 2012. http://www.kddcup2012.org/.
[3] VizSec community, 2013. http://vizsec.org.
[4] J. Abello, F. van Ham, and N. Krishnan. ASK-GraphView: A large

scale graph visualization system. IEEE Transactions on Visualization
and Computer Graphics, 12(5):669–676, 2006.

[5] D. Archambault, T. Munzner, and D. Auber. Multi-level graph lay-
out by topological features. IEEE Transactions on Visualization and
Computer Graphics, 13(2):305–317, 2007.

[6] D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable
exploration of graph hierarchy space. IEEE Transactions on Visual-
ization and Computer Graphics, 14(4):900–913, 2008.

[7] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale visu-
alization of small world networks. In IEEE Symposium on Information
Visualization (InfoVis’03), pages 75–81, 2003.

[8] A. Bezerianos1, F. Chevalier, P. Dragicevic, N. Elmqvist, and J. D.
Fekete. Graphdice: A system for exploring multivariate social net-
works. Computer Graphics Forum, 29(3):863–872, 2010.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[10] N. Cao, J. Sun, Y.-R. Lin, D. Gotz, S. Liu, and H. Qu. Facetatlas:
Multifaceted visualization for rich text corpora. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1172–1181, 2010.

[11] C. Dunne, N. H. Riche, B. Lee, R. Metoyer, and G. Robertson. Graph-
trail: analyzing large multivariate, heterogeneous networks while sup-
porting exploration history. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1663–1672, 2012.

[12] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for informa-
tion visualization: Overview, techniques and design guidelines. IEEE
Transactions on Visualization and Computer Graphics, 16(3):439–
454, 2010.

[13] E. Gansner, Y. Koren, and S. North. Topological fisheye views for
visualizing large graphs. In IEEE Symposium on Information Visual-
ization (InfoVis’04), 2004.

[14] J. Heer and D. Boyd. Vizster: visualizing online social networks.
In IEEE Symposium on Information Visualization (InfoVis’05), pages
32–39, 2005.

[15] H. Kang, C. Plaisant, B. Lee, and B. B. Bederson. Netlens: Iterative
exploration of content-actor network data. Information Visualization,
6(1):18–31, 2007.

[16] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In Proceed-
ings of the international conference on Human factors in computing
systems (CHI’95), 1995.

[17] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task tax-
onomy for graph visualization. In Proceedings of BEyond time and
errors: novel evaLuation methods for Information Visualization (BE-
LIV), pages 82–86, 2006.

[18] B. Lee, G. Smith, G. Robertson, M. Czerwinski, and D. S. Tan.
Facetlens: exposing trends and relationships to support sensemaking
within faceted datasets. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1293–1302, 2009.

[19] F. Lorrain and H. C. White. Structural equivalence of individuals in
social networks. The Journal of Mathematical Sociology, 1(1):49–80,
1971.

[20] J. B. MacQueen. Some methods for classification and analysis of
multivariate observations. Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, University of Cali-
fornia Press, 1:281–297, 1967.

[21] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large hetero-
geneous social networks by semantic and structural abstraction. IEEE
Transactions on Visualization and Computer Graphics, 12(6):1427–
1439, 2006.

[22] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pages 336–343, 1996.

[23] B. Shneiderman and A. Aris. Network visualization by semantic sub-
strates. IEEE Transactions on Visualization and Computer Graphics,
12(5):733–740, 2006.

[24] G. Sindre, B. Gulla, and H. G. Jokstad. Onion graphs: aesthetics and
layout. In Proceedings of the IEEE Workshop on Visual Languages,
pages 287–291, 1993.

[25] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer:
Extraction and mining of academic social networks. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 990–
998, 2008.

[26] F. van Ham and A. Perer. “search, show context, expand on demand”:
Supporting large graph exploration with degree-of-interest. IEEE
Transactions on Visualization and Computer Graphics, 15(6):953–
960, 2009.

[27] M. Wattenberg. Visual exploration of multivariate graphs. In SIGCHI
conference on Human Factors in computing systems (CHI’06), 2006.

[28] D. R. White and K. P. Reitz. Graph and semigroup homomorphisms
on networks of relations. Social Networks, 5(2):193–234, 1983.

