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Abstract
Streamgraphs were popularized in 2008 when The New York Times used them to visualize box office revenues for 7500 movies
over 21 years. The aesthetics of a streamgraph is affected by three components: the ordering of the layers, the shape of the
lowest curve of the drawing, known as the baseline, and the labels for the layers. As of today, the ordering and baseline
computation algorithms proposed in the paper of Byron and Wattenberg are still considered the state of the art. However, their
ordering algorithm exploits statistical properties of the movie revenue data that may not hold in other data. In addition, the
baseline optimization is based on a definition of visual energy that in some cases results in considerable amount of visual
distortion. We offer an ordering algorithm that works well regardless of the properties of the input data, and propose a 1-norm
based definition of visual energy and the associated solution method that overcomes the limitation of the original baseline
optimization procedure. Furthermore, we propose an efficient layer labeling algorithm that scales linearly to the data size in
place of the brute-force algorithm adopted by Byron and Wattenberg. We demonstrate the advantage of our algorithms over
existing techniques on a number of real world data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

A time series is a sequence of numeric values each labeled with a
temporal reference, and ordered by time. A standard way to visual-
ize time series is to plot them on a cartesian chart that has time on
the x-axis and the numeric values on the y-axis. This chart clearly
shows how the series evolve over time. Plotting multiple time series
in the same chart allows easy comparison between them. However
it is not effective at showing the evolution of their sum. Stacked
graphs, or stacked charts, are a representation that mitigates this
limit. In a stacked graph, time series are shown as colored stripes
(or layers) that flow in the direction of the x-axis, and whose thick-
ness represents at each time instant the numeric value. Layers are
stacked one on top of another without gaps. The result is a diagram
in which it is easy to compare single layers with the total, at the
expense of harder comparisons between pairs of layers. Given a
stacked graph, the baseline is its bottommost curve. The simplest
way to make a stacked graph is to stack layers on a straight line that
corresponds to the x-axis. However different baselines may be used
in order to reduce the amount of fluctuation in the layers.

† e-mail:dibartolomeo@ing.uniroma3.it
‡ e-mail:yifanhu@yahoo.com

First introduced by ThemeRiver [HHWN02], stacked graphs
with curved baselines were popularized in 2008 by an article on
The New York Times, which used them to visualize box office rev-
enues for 7500 movies over 21 years. The visualization became
immediately popular and controversial, gathering comments rang-
ing from “fantastic” to “unsavory”. Later on, a paper by Byron and
Wattenberg [BW08] described the technique used in The New York
Times, calling it streamgraphs. The article outlined how the aes-
thetics of a streamgraph is controlled by three components: the or-
dering of layers, the shape of the baseline, and the labeling of the
layers. In addition, the authors explained how stacked graphs with
a flat baseline, ThemeRiver-like graphs, and their streamgraphs all
fitted into a general mathematical framework, and that each of these
had different aesthetic properties. For this reason, in this paper we
will refer to any kind of stacked graph as a streamgraph.

At the time of writing this article, the paper of Byron and Watten-
berg [BW08] is still the most authoritative work on streamgraphs,
and other works are mostly implementations or minor variations
of the original concepts. The algorithmic pipeline of Byron and
Wattenberg [BW08], and that of this paper, consists of three dis-
tinct steps: layers are first ordered; a baseline is then computed to
minimize the fluctuation of layers; finally, labels are computed and
superimposed on the streamgraph. However, in each of these steps,
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the solutions in [BW08] have limitations that have not been doc-
umented in the literature. First, the layer ordering algorithm ex-
ploited statistical properties of the data of interest, box office rev-
enues, that may not hold in other data. Second, the algorithm to
compute a baseline is based on a 2-norm measurement of the fluc-
tuation of layers, called wiggle, which works well for relatively
smooth time series, but suffers from unpleasant distortions when a
layer has sudden changes in thickness (or jumps, see Fig. 1). Third,
in [BW08] a brute-force layer labeling algorithm was used that does
not scale well with the size of the data.

We resolve each of these limitations by proposing better order-
ing, baseline calculation, and layer labeling algorithms, and verify
the effectiveness of our solutions by performing experiments that
compare our algorithms with the current state of the art. Our con-
tributions are:

• an alternative definition of wiggle based on 1-norm that gives vi-
sually calmer layer arrangements even for time series with sud-
den jumps, and an algorithm that minimizes the wiggle (Sec-
tion 3);

• a new ordering algorithm that is effective on general data (Sec-
tion 4);

• an efficient layer labeling algorithm that scales linearly to the
size of the time series data (Section 5).

Together, these represent a new algorithmic pipeline that signifi-
cantly advances the state of the art in the creation of streamgraphs.
The resulting JavaScript code will be made available as an open
source extension of the popular D3 library [Bos]. Additional ma-
terial on this submission, with high resolution figures produced by
our algorithms, can be found online at [DH].

We note that defining wiggle by 1-norm avoids uniform small
jumps across the layers in favour of a few larger jumps. This spar-
sifying effect is similar to that of using 1-norm for regularization in
regression, known as lasso [Tib94], hence the name of this paper.

2. Related Work

The first work to introduce streamgraphs was The-
meRiver [HHWN02], a tool to visualize the time evolution
of topics extracted from large collections of text documents. The
thickness of a layer represented the popularity of a topic among
the selected documents. The baseline was computed so that the
drawing was symmetric with respect to the x-axis. No specific
layer ordering algorithm was described, however the authors
discussed about the possibility of letting the user decide the
ordering, and of putting related layers close.

The paper from Byron and Wattenberg [BW08] formally intro-
duced streamgraphs. It described the mathematical technique and
design considerations behind the visualization used in a 2008 New
York Times article showing box office revenues for 7500 movies
over 21 years. The authors introduced the concept of wiggle as a
measure of distortion of layers. Minimizing this measure aimed at
both making layers more readable, and at avoiding the artificial
look of ThemeRiver drawings in favor of a more natural, river-
alike flowing. For ordering layers, the authors outlined how layers
with high wiggle values should not be at the center of the drawing

to avoid distortions to the other layers around them. Layers pro-
duced from box office revenues tend to have a sudden increase in
the first weeks out, then they rapidly decrease as the interest in the
movies declines. For this reason, layers were ordered by their “on-
set” time, with older movies at the center of the drawing and newer
movies at the edges. It was left as future work to study how layers
could be ordered by using the wiggle as a measure of quality. The
paper also discussed layer coloring and labeling.

Many other works used streamgraphs, but most of them are ap-
plications of the concepts of [HHWN02] and [BW08], which were
extended to work on specific data.

Several works employ streamgraphs for visualizing topics ex-
tracted from text documents. TIARA [LZP∗12] is a system that
visualizes the temporal trend of topics, augmenting streamgraphs
by adding keyword clouds inside layers. The ordering of layers is
chosen on the basis of several contrasting criteria, which include
the on-set approach of [BW08], and a new measure of the volatility
of a layer. Although the paper does not evaluate the effectiveness
of the ordering algorithm, their solution is one of the few attempts
to order layers with an approach different from [BW08]. TIARA
also studied the problem of how to fit a keyword cloud at a specific
time point in a layer. In this paper we solve a different problem
of finding the best time point in a layer to fit the largest possi-
ble label of a certain aspect ratio. HierarchicalTopics [DYW∗13]
deals with hierarchies in topics extracted from text documents. Co-
ordinated views show both the topic hierarchy by means of a tree,
and the time evolution of topics through a streamgraph with the
algorithm of [HHWN02]. While a streamgraph is used to visual-
ize a single level of the hierarchy, the user can put several of them
next to another to compare different levels. In [XWW∗13], stream-
graphs are used to display the competition for public attention be-
tween various topics promoted by multiple types of opinion leaders
in agenda-setting on social media. Another work dealing with the
visualization of topics is the system described in [DGWC10]. The
system supports the visualization of dynamic data, which the user
can navigate by panning the current time interval. Layers are to-
tally ordered by a global measure of “newness”, that is the time of
first appearance of a topic, and never change position. The on-set
approach of [BW08] was ineffective in a dynamic setting.

Other works visualize the complex relationships between time
series through modified versions of streamgraphs, to overcome the
natural limits of this metaphor. LoyalTracker [SWL∗14a] shows the
time evolution of the “loyalty” of users of search engines through
a streamgraph-like metaphor. TextFlow [CLT∗11] focuses on the
relations between topics extracted from text documents, and how
they merge and split over time. The visualization has some similar-
ity with streamgraphs, but topics can split and merge over time, and
gaps between topics are allowed for outlining branching behaviors.
RoseRiver [CLWW14] extends this approach to dynamic hierar-
chies of topics. EvoRiver [SWL∗14b] visualizes how competitive
or cooperative topics are in attracting attention on social media.

Other areas of visualization studied problems similar to
that of streamgraphs, namely, optimal ordering and sloping of
lines to minimize the wiggle. In Storyline visualization [TM12,
LWW∗13], this is achieved by genetic algorithms [TM12], or by
quadratic programming [LWW∗13]. In directed graph visualiza-

submitted to Eurographics Conference on Visualization (EuroVis) (2016)



Marco Di Bartolomeo & Yifan Hu / There is More to Streamgraphs than Movies 3

tion [GKNpV93], polyline edges across multiple layers are kept as
parallel to the vertical direction as possible by linear programming.

3. Finding a Baseline via Wiggle Optimization

In this section we define the concept of wiggle for a streamgraph,
and show how to compute a baseline for a streamgraph such that
the wiggle is minimized. After discussing the limits of the existing
techniques, we describe our solution, which encompasses a new
definition of wiggle and an optimization method.

3.1. Basic Concepts

We assume we are working with discrete data, that is, a time series
is a sequence of m numbers. Given an ordered list of time series, we
assume that the ordering of the layers in a streamgraph follows that
of the list. We denote fi as the i-th time series, where i = 1,2, . . . ,n.
Given a streamgraph of series fi, we denote gi as the sequence of y-
coordinates corresponding to the points of series fi. As a particular
case, g0 denotes the baseline of the streamgraph. Also, note that
gi = g0 +∑

i
j=1 f j for i = 1,2, . . . ,n.

Wiggle is a metric introduced in [BW08] to measure the aesthet-
ics of a streamgraph. Intuitively, the wiggle of a streamgraph can be
thought of as an indication of how much it fluctuates. For example,
a streamgraph with only flat layers has wiggle equal to 0. Wig-
gle is a measure of the visual complexity of a streamgraph, since
distorted layers are harder to understand, e.g., an increasing trend
in the thickness of a layer could be hidden by a visual distortion
that visualizes the layer as a steep descent. The “weighted wiggle”,
which gives more importance to layers with higher thickness and is
thus consider better, is defined in [BW08] as:

ww2(g0) =
n

∑
i=1

fi

(
g
′
i +g

′

i−1
2

)2

(1)

In (1), g′ is the derivative of g. By definition, wiggle is a function
which returns a number (wiggle value) for each x-coordinate of a
streamgraph. However, with a slight abuse of notation, we also de-
fine the wiggle value of a streamgraph as the sum of the wiggle
values of the streamgraph over all x-coordinates. Further, the wig-
gle value of a layer is the wiggle value of a streamgraph composed
only of that layer and having a flat baseline. Finally, the wiggle
value of a list of ordered layers is the wiggle value of the stream-
graph that has that layer ordering and a baseline that minimizes the
wiggle.

With a fixed layer ordering, the wiggle of a streamgraph depends
only on the baseline. A method to find a baseline g0 that mini-
mizes the wiggle is described in [BW08], and consists of taking
the derivatives of (1) with regard to g

′

0, and set them to zero. The
optimization problem can be solved with a per-value approach, re-
stricting (1) to a single x-coordinate of the streamgraph. Derivatives
in the equations can be computed with backward finite differences.

3.2. Limits of Existing Techniques

Equation 1 was used to produce aesthetically pleasant streamgraphs
of box office revenues in The New York Times article. It is effec-
tive in visualizing relatively smooth time series, but suffers from

x1 x2

(a)

x1 x2

(b)

Figure 1: Different baselines: (a) with weighted 2-norm minimiza-
tion, notice the wiggle on all layers; (b) with 1-norm minimization:
only the thick green layer has a wiggle.

unpleasant distortions when a layer has sudden changes in thick-
ness, or jumps. In Fig. 1 two possible drawings of four ordered
layers are depicted, where one layer is shorter than the others. It is
easy to see that the streamgraph in Fig.1a is affected by distortions
at x1 and x2, that is, in correspondence of the first non-zero value
of the short layer at x2. Much of these are avoidable, as shown in
Fig. 1b. Equation 1 gives a lower wiggle value for Fig. 1a than that
for Fig. 1b. For example, assume that the short layer has thickness
equal to 4 and the others have thickness equal to 1. Also, assume
x2−x1 = 1. In Fig. 1a, from bottom to top, values g

′
i, with i= 0 . . .4,

at x2 are −2, −2, −2, −2, and 2, respectively, therefore ww2 = 12.
In Fig. 1b, with a similar reasoning, we obtain ww2 = 16. This
means that, when minimizing (1), a baseline like Fig. 1a is pre-
ferred over that of Fig. 1b. In real data, the presence of many layers
can amortize the distortion due to a jumping layer, though it is still
noticeable and unpleasant, see Fig.2a.

(a) (b)

Figure 2: Different baselines: (a) with 2-norm, distortions are
present; (b) with 1-norm, all layers are smooth.

There are two reasons for the unappealing distortions made by
a baseline computed by minimizing (1). First, consecutive wiggle
pairs (g

′
i,g

′

i−1) are cancelled if the two terms have equal absolute
value and opposite sign. Such pairs are ignored in the minimization
process, regardless of the amount of distortion they cause to other
layers. In Fig. 1a, this happens with g

′

3 (light green) and g
′

4 (dark
green). Also, the wiggle is defined based on 2-norm, which tends
to favour many small “wiggles” to a large one, as seen in Fig. 1a
and Fig. 2a.

3.3. Optimal Weighted Wiggle Under 1-norm

We define the 1-norm based weighted wiggle as follows:

wwa
1(g0) =

n

∑
i=1

fi


∣∣∣g′i∣∣∣+ ∣∣∣g′i−1

∣∣∣
2

=
n

∑
i=0

wi

∣∣∣g′i∣∣∣
=

n

∑
i=0

wi

∣∣∣∣∣g′0 + i

∑
j=1

f
′
i

∣∣∣∣∣= n

∑
i=0

wi

∣∣∣g′0− pi

∣∣∣ .
(2)
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1: function OPTIMALBASELINEDERIVATIVE(w, p)
2: d←−∑

n
i=0 wi

3: for i = 0,1, . . . ,n do
4: d← d +2wi
5: If d ≥ 0 return pi
6: end for
7: end function

Figure 3: The optimal baseline algorithm

Mathematically, the quadratic function involved in the 2-norm
based definition of wiggle is smooth and easy to optimize, which
may be part of the reason why Byron and Wattenberg chose to de-
fine wiggle that way. However in the following we show that the
1-norm based definition, though non-smooth, can also be solved
easily, but does not suffer from the distortions due to sudden jumps.

Similarly to (1), we work on a per-value basis, that is, at a fixed
x-coordinate of the streamgraph. We denote wi =

1
2 ( fi + fi+1) (we

assume f0 = fn+1 = 0), and pi = −∑
i
j=1 f

′
i (we assume p0 = 0).

The wiggle is based on 1-norm, which avoids uniform small jumps
across the layers, a problem discussed in Section 3.2 that affects the
2-norm wiggle, in favour of a few larger jumps. This sparsifying
effect is similar to the use of 1-norm for regularization in regres-
sion, known as lasso [Tib94]. Also, the norm is computed for each
g′i term, which avoids the cancelling of terms with equal absolute
value and opposite sign.

To minimize (2), we first observe some properties of its deriva-
tive with respect to g

′

0, which is d(g
′

0) = ∑
n
i=0 wi sgn

(
g
′

0− pi

)
.

With a slight abuse of notation, we reorder the p’s from small to
large and still denote them as p, in such a way that p0 ≤ p1 . . .≤ pn.
When looking at the n+2 intervals defined by this sequence from
left to right, the derivative of the wiggle, when g

′

0 ∈ (−∞, p0),
is d−1 = −∑

n
i=0 wi. The derivative when g

′

0 ∈ (p0, p1) is d0 =

d−1 + 2w0, the derivative when g
′

0 ∈ (p1, p2) is d1 = d0 + 2w1,
etc. That is, the derivative of the wiggle is negative for g

′

0 < p0, it
increases as g

′

0 increases, and it is positive for g
′

0 > pn. Therefore,
the minimum wiggle is achieved at the point where the derivative
changes from negative to non-negative. Fig. 3 shows an algorithm
for finding the optimal g

′

0. Effectively, it finds a weighted median
of pi’s with weights wi’s. The returned value can be numerically
integrated to obtain g0, that is, a baseline value that minimizes (2).

Fig. 2 compares the effect of computing a baseline with 2-norm
minimization, and with this technique. The baseline in Fig. 2a is
computed by minimizing (1), and it is affected by distortion near
the boundaries of short layers. The baseline in Fig. 2b is computed
by minimizing (2), resulting in a smoother drawing.

4. Layer Ordering

This section describes an algorithm for ordering the layers of a
streamgraph that is effective for general time series. It involves gen-
erating an initial good ordering, and a subsequent iterative refine-
ment of the ordering.

4.1. Limits of Existing Techniques

In [BW08] an algorithm for ordering layers is proposed. Layers
produced by box office revenues tend to have a sudden increase in
the first weeks out, then they rapidly decrease as the interest in the
movies declines. For this reason, layers were sorted by their “on-
set" time, defined as the x-coordinate of the first non-zero value.
Ordering was done with an “inside-out” approach, which stacks the
sorted layers by alternatively putting them above or below the two
edges of the drawing. As a result older movies appear at the center
of the drawing and newer movies at the outskirt, and the overall ef-
fect is visually appealing. Different implementations are possible,
for example the D3 library [Bos] implements the algorithm by or-
dering layers by the x-coordinate of their maximum value. These
approaches work well for movie data but are not appropriate for
general data. For example, Fig. 5a is an ordering produced with
the on-set method of [BW08]. Although layer 10 has an early on-
set time, it cannot be placed at the center of the drawing without
distorting other layers. In [BW08] two alternative, more general
approaches for ordering layers are briefly introduced. The first one
implies measuring the amount of change in a layer by a “volatility”
metric, and using it for ordering layers with the inside-out method
in place of the on-set time. In such an ordering, layers with high
volatility are placed as far away from the center of the drawing as
possible, so not to perturb the other layers around them. Putting
calm layers at the center also gives a good support for stacking
other layers. The second method consists of ordering layers so that
their wiggles mutually cancel out to the greatest extent possible.
However, none of these ideas were implemented in [BW08].

4.2. Initial Ordering

BestFirst is the algorithm that we designed for producing
an initial layer ordering. It is based on the intuition introduced
in [BW08] that layers can mutually cancel their wiggle, and in
fact it is a greedy implementation of that idea. The algorithm starts
from an empty ordering and iteratively adds layers, choosing the
one with the best wiggle at each iteration. More specifically, the
algorithm starts with a straight line, whose two sides are labeled
as current top baseline and current bottom baseline, and defined as
two sequences of 0’s. Then, all layers still to insert are tested. Each
of them is stacked on both the current top and bottom baseline,
and we compute the wiggle produced by each choice. Finally, the
layer-baseline pair with the lowest wiggle is selected for insertion.
The chosen current baseline is then updated by adding the thick-
ness of the inserted layer. An iteration is done for each layer still to
be inserted.

BestFirst is effective at keeping “calm” layers inside the
drawing and putting the others outside. However, on some instances
it can produce aesthetically unpleasant orderings, such as in Fig. 5b,
where it is easy to see that layer 24 and layer 6 should be switched
(see also Fig. 4), and that layer 30 should be on top of them. The
reason for the wrong decisions is that BestFirst computes the
wiggle of a layer as an integral along the layer. Parts of a layer that
have thickness equal to zero do not contribute to the wiggle, and
this could mitigate the sudden increment in value (despite the high
derivative) that is present at the boundaries of the zero intervals.
As a result, a short layer tends to have much smaller wiggle than
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a long layer, and is more likely to appear closer to the center of
the streamgraph, distorting any other layers on top of it. Note that
the phenomenon can happen also in absence of zero intervals. For
example, a layer could start with a small constant value, followed
by a jump. This problem is tricky to handle with any approach that
makes greedy ordering decisions purely based on a measure of the
amount of change of individual layers (including our BestFirst
and the method based on volatility briefly introduced in [BW08]).
This limits its general use, given that data with jumps is common
in the real world (e.g., demographic data could have been collected
starting from different dates for different countries).

4.3. Iterative Refinement

(a) (b)

Figure 4: Two orderings of two layers on a flat baseline. Case (b)
produces a distortion, case (a) is preferred.

Instead of trying to characterize the volatility of a layer purely
based on the layer itself, for making better ordering decisions, we
claim that a better metric of volatility can be indirectly measured
by the effect a layer has on other layers. Referring to Fig. 5b, it be-
comes clear that the position of layer 24 is wrong only after layer
6 has been stacked on top of it, since the latter suffers from a dis-
tortion that would have been avoided by stacking it in another suit-
able position. Also, Fig. 4a is a better ordering than Fig. 4b, since
in the latter the bottom layer does not properly “support” the top
one, and distorts it. Following this intuition, we propose a refine-
ment algorithm, TwoOpt, to further improve the initial ordering of
BestFirst. Starting from an initial ordering, the algorithm iter-
atively compares two neighboring layers and decides which of the
two possible orderings gives the lowest wiggle. The result of the it-
erative scans is that, eventually, layers with a high value of wiggle,
or those with a tendency to induce distortions to the layers on top
of them, are pushed towards the edges of the drawing.

30
24

31
17
12

10
6

(a)

10 30
31

12
17

24
6

(b)

10
31

12
17

6
24 30

(c)

Figure 5: Layer orderings produced by different algorithms: (a)
on-set; (b) BestFirst; (c) TwoOpt. The first two have layer distor-
tions. Labels identify layers and were positioned with the algorithm
described in Section 5.

Fig. 6 gives the pseudo code for TwoOpt. It starts from the ini-
tial ordering from BestFirst. Then, from the center of the or-
dering, it performs several inside-out scans towards the top and the
bottom. Each scan uses the wiggle heuristic to compare every pair

1: function TWOOPT(init,m,nr,ns,wig)
2: . init: initial ordering; m: the center of the drawing; nr: the number

of repeats; ns: the number of scans; wig: the wiggle heuristic.
3: ordering← init,bestWiggle← ∞,bestOrdering← nil
4: . Do random executions and take the best result
5: for r← 1..nr do
6: . Do not discard the initial ordering
7: If r > 1 shuffle the ordering
8: . Execute several inside-out scans
9: for s← 1..ns do

10: for j← m..lenght(ordering)−1 do
11: . Compare the wiggle of j, j+1 and j+1, j
12: res← cmp( j, j+1,ordering,wig)
13: if res > 0 then
14: swap( j, j+1,ordering)
15: end if
16: end for
17: Scan in the other direction, with j← m−1..2
18: end for
19: . Evaluate the produced ordering
20: graph← midlineGraph(ordering,m−1,m)
21: currWiggle← wig(graph)
22: if currWiggle < bestWiggle then
23: bestWiggle← currWiggle
24: bestOrdering← ordering
25: end if
26: end for
27: return bestOrdering
28: end function

Figure 6: The algorithm for ordering layers

of adjacent layers, and decides whether swapping them decreases
their wiggle. More precisely, the two orderings of a pair of lay-
ers are stacked on a flat baseline, then their respective wiggles are
computed and compared. Note that the reason we compare the or-
derings of two layers on a flat baseline, instead of evaluate using
the total wiggle on the best baseline each time, is that the former
is computationally cheaper, and that a good ordering tends to give
relatively flat middle layers, hence using a flat baseline is a rea-
sonable approximation. The scans are repeated a given number of
times and each repetition produces a new ordering, which is eval-
uated through the wiggle heuristic. To do this, the ordered layers
are stacked with a baseline such that the center of the drawing, i.e.,
the start point of the inside-out scan, is a straight line. Then the
wiggle of this streamgraph is computed. The algorithm is repeated
several times, shuffling the layers at each repetition. Finally, the
ordering with the lowest wiggle is returned as result. Fig. 5c is a
drawing with an ordering produced by TwoOpt, which does not
have the distortions of the on-set and BestFirst versions (see
respectively Figures 5a and 5b). The reason for the layer shuffling
is that the initial ordering induces a bipartition of the layers, which
is not changed by TwoOpt, since the two partitions are processed
independently during the inside-out reordering. If two layers in a
same partition distort each other in both their possible orderings, it
is a problem that TwoOpt cannot solve. In some instances, moving
one of the two layers to the other partition removes the problem.
This is the situation shown in Fig. 5b, in which layer 10 and layer
30 are on the same side of the central reference line, and swapping
them does not improve their wiggle. Fig. 5c is an alternative order-
ing in which the two conflicting layers are on the two sides of the
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drawing and do not distort each other. TwoOpt shuffles the layers
in an attempt to avoid bad bipartitions like Fig. 5b, and the chances
of success increase with the number of tries.

5. Labeling of Layers

An important part of the design of a streamgraph is the placement
of labels for the layers. Ideally a label is visually associated with the
data it represents. In this section we propose a fast label placement
algorithm that scales linearly to the data size, and logarithmically
to the ratio between the largest and smallest desirable font size.

5.1. Limits of Existing Techniques

Byron and Wattenberg [BW08] placed labels within the layers
themselves. The font size of the labels is adjusted to fit each layer.
The labels are located to maximize the font size. They adopted a
brute-force algorithm, but noted that “the online interactive piece
does not use this proposed label placement strategy because of the
poor real-time performance of the brute-force algorithm.” Based on
their brief description, we suspect that the computational complex-
ity of their algorithm may be quadratic to the data size.

5.2. Algorithm Design

We assume that the top and bottom layers for which we need to
place the label is defined by the sequences {ti|i = 0, ...,m−1} and
{bi|i = 0, ...,m−1}, respectively, with ti > bi.

Suppose we have a label, with width w and aspect ratio σ (de-
fined as the ratio between width and height of the label), to be
placed in this layer such that it is centered at x = i. Then the
lower boundary of this label must be greater than b j for all j = i−
w/2, . . . , i+w/2. Thus the lowest the label could reach along the y-
direction is the top most point of the bottom sequence within the x-
window size of w centered at i, namely Bi = maxi−w/2≤ j≤i+w/2 b j.
Similarly the highest it can reach along the y-direction is the bot-
tom most point of the top sequence within the x-window of size w
centered at i, or Ti =mini−w/2≤ j≤i+w/2 t j . Fig. 7 shows a layer with
m = 10 points and w = 4. On the left side, the shaded area shows
the case with i = 2. Here we have B2 = 1 and T2 = 2. On the right
side, when i = 7, we have B7 = 1 and T7 = 3.
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Figure 7: Lower and upper bounds for a label with width w = 4.
Left: i = 2. Lower/upper bounds B2 = 1 and T2 = 2. Right: i = 7.
Lower/upper bounds B7 = 1 and T7 = 3

Therefore to place a label with the largest possible font size,
we can start from a large label width w based on the largest font
size to use and the number of characters, then vary i from w/2 to
n−1−w/2, and check whether the achievable height of the label,
Hi = Ti−Bi, satisfies the aspect ratio requirement w/Hi ≤ σ . If it

is true, we can define the center of the label as (i, 0.5 ∗ (Bi +Ti)).
If not, we shrink w by a constant factor (e.g., 10%), and repeat the
process until a feasible solution is found. This process takes a num-
ber of steps logarithmic to the the ratio between the largest font
size, and largest feasible font size, because after that many steps,
w will be small enough to allow a feasible solution. To compute Bi
(or Ti) for w/2 ≤ i ≤ m− 1−w/2, a naive way would be to com-
pute the maximum (or minimum) of a sliding x-window of width w
over the sequences b (or t). However this would take time O(wm).
Instead we can use a faster sliding window min/max algorithm that
compute all mins or maxes in time O(m).

This fast labeling algorithm is given in Fig. 8. In the algorithm,
the slidingWindowMin and slidingWindowMax functions imple-
ment the faster sliding window min/max algorithm (see, e.g., [sli]).

1: function LABELING(t,b,minFontWidth,maxFontWidth,
label,sigma)

2: w← round(maxFontWidth∗ length(label))
3: wmin← round(minFontWidth∗ length(label))
4: while w > wmin do
5: T = slidingWindowMin(t,w)
6: B = slidingWindowMax(b,w)
7: imax← argmaxi{Bi−Ti|i = 0,1, ...,m−w−1}
8: hmax← Bimax−Timax
9: center = ( 1

2 w+ imax, 1
2 (Timax +Bimax))

10: if w≤ σ ∗hmax then
11: render label at center with width w and height w/σ

12: return
13: end if
14: w← w−max(1,round(0.1∗w))
15: end while
16: end function

Figure 8: The algorithm for layer labeling

6. Time Complexity of the Algorithms

We analyze the complexity of our algorithms in the following. Re-
call that we assume that each time series is a sequence of m num-
bers, and there are n time series. Therefore, nm is the data size.

Like the 2-norm baseline algorithm [BW08], the proposed
weighted 1-norm baseline algorithm works on a per-x-value basis.
It takes O(n) operations to find the baseline derivative using Algo-
rithm 3 for each x-value. Thus the overall complexity is O(nm).

Our ordering algorithms execute, as sub-procedures, the opera-
tions of stacking a set of layers on a baseline, and of computing its
wiggle value. Both these operations take O(nm) time.

BestFirst executes one iteration for each time series to add to
the streamgraph, so there are O(n) iterations. In turn, each iteration
tests every time series that has not be added to the streamgraph, re-
quiring another O(n) factor. A time series is tested by stacking it on
each of the two current baselines, and evaluating its wiggle. These
two operations, executed on a single time series, take O(m) time.
Therefore, the total time complexity of BestFirst is O(n2m).

TwoOpt depends on two parameters: the number of repeats r
and the number of scans s. Refer to Fig. 6. First, the initial layer or-
dering is shuffled, which can be done in O(n) time with the Fisher-
Yates method. Then s inside-out scans are executed. For each of
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them, time series are pairwise compared and O(n) comparisons are
performed. Comparing two time series means stacking them on a
flat baseline in each of their two possible orderings. Constructing
these two streamgraphs and computing their wiggles takes O(nm)
time. After the scans, a baseline for the ordered series is computed,
such that the center of the resulting streamgraph, i.e., the start point
of the inside-out scan, is a straight line. This requires we sum at
each time point all series that are below the reference straight line.
So, computing the baseline takes O(nm) time. Finally, stacking
the ordered layers on this baseline and computing its wiggle takes
O(nm) time. Since the entire procedure is repeated r times, the time
complexity of TwoOpt is O(r(n+ snm+nm)) = O(rsnm).

The layer labeling algorithm finds the largest possible height for
a fixed width of the label in time linear to m per layer. The overall
complexity is O(nmlog(r)), where r is the ratio between the largest
font size to try out and the largest feasible font size.

7. Experiments

We performed a numerical evaluation to compare the effectiveness
and the efficiency of our layer ordering algorithm with the state of
the art. The quality of an ordering is measured using the 1-norm (2)
and the 2-norm (1) wiggle values. The hypothesis tested in these ex-
periments is that an ordering algorithm designed to reduce the wig-
gle produces drawings with a lower wiggle than other algorithms.

7.1. Datasets

The experiments were conducted on a number of datasets, which
we collected from real applications. These are:

• Unemployment: unemployment statistics [datb] for 31 European
countries, from 1983 to 2013. 371 time points.

• Movies: U.S. box office revenues [data] of 161 movies which
were on screen in the first six months of 2015. 28 time points.

• Sandy: number of calls to the NYC 311 [date] in the days before
and after hurricane Sandy hit New York City, i.e., from 10/14/12
to 11/17/12, for 158 topics. 35 time points.

• Stocks: stock prices of 662 companies listed on the NAS-
DAQ [datf] from 2005 to 2015. 121 time points.

• Marketcap: market capitalization of 662 companies listed on the
NASDAQ [datg] from 1995 to 2015. 241 time points.

• Google: relative variations in volume of Google search traffic in
the U.S. [datc] across 27 sectors of the economy from 2014 to
2015. 365 time points.

• Linux: number of commits on GitHub on the Linux kernel [datd]
by 786 contributors from 2013 to 2015. 24 time points.

7.2. Experimental Design

The algorithms evaluated in the experiments were: Optimum,
TwoOpt, TwoOptR, BestFirst, Onset, D3 and Random. TwoOpt and
TwoOptR both implement the algorithm in Fig. 6, with the differ-
ence that TwoOpt applies BestFirst to produce an initial layer per-
mutation, while TwoOptR starts from a random permutation. Opti-
mum is a brute-force ordering algorithm that explores all layer per-
mutations, and selects the one that minimizes the wiggle. Finally,
algorithm Random orders the layers randomly. All algorithms were

Table 1: Normalized wiggles on 8 randomly selected layers, aver-
aged over 20 random selections. Each entry shows 1-norm/2-norm
wiggles. Lower values (blue) are better than higher values (red).

dataset TwoOpt TwoOptR BestFirst OnSet D3 Random
unemp 0.16 / 0.05 0.17 / 0.01 0.22 / 0.23 0.26 / 0.25 1.00 / 1.00 0.56 / 0.42
movies 0.06 / 0.15 0.06 / 0.19 0.72 / 0.91 0.27 / 0.97 0.34 / 1.00 1.00 / 0.88
sandy 0.21 / 0.44 0.14 / 0.28 0.15 / 0.62 0.11 / 0.50 0.25 / 0.77 1.00 / 1.00
stocks 0.17 / 0.07 0.18 / 0.12 0.64 / 0.55 0.64 / 0.53 0.90 / 0.88 1.00 / 1.00

marketcap 0.03 / 0.02 0.02 / 0.02 0.17 / 0.07 0.31 / 0.40 0.70 / 0.55 1.00 / 1.00
google 0.13 / 0.17 0.14 / 0.20 0.59 / 0.44 0.82 / 0.84 1.00 / 1.00 0.71 / 0.74
linux 0.26 / 0.16 0.32 / 0.24 0.33 / 0.34 0.57 / 0.71 0.52 / 0.56 1.00 / 1.00

Table 2: Normalized wiggles of algorithms on 50 randomly se-
lected layers, averaged over 20 random selections. Each entry
shows 1-norm/2-norm wiggles. Lower values (blue) are better than
higher values (red).

dataset TwoOpt TwoOptR BestFirst OnSet D3 Random
unemp. 0.00 / 0.00 0.00 / 0.02 0.34 / 0.25 0.14 / 0.10 1.00 / 1.00 0.71 / 0.60
movies 0.00 / 0.00 0.39 / 0.07 0.10 / 0.08 0.10 / 0.42 0.27 / 0.46 1.00 / 1.00
sandy 0.00 / 0.00 0.32 / 0.22 0.04 / 0.06 0.59 / 0.60 0.30 / 0.33 1.00 / 1.00
stocks 0.00 / 0.00 0.00 / 0.00 0.76 / 0.46 0.38 / 0.50 1.00 / 0.96 0.91 / 1.00

marketcap 0.00 / 0.00 0.19 / 0.17 0.15 / 0.32 0.12 / 0.30 0.58 / 1.00 1.00 / 0.99
google 0.00 / 0.00 0.02 / 0.05 0.74 / 0.23 0.93 / 1.00 1.00 / 0.88 0.72 / 0.75
linux 0.00 / 0.00 0.43 / 0.33 0.05 / 0.02 0.83 / 0.81 0.66 / 0.57 1.00 / 1.00

implemented in Javascript and the experiments were executed on a
machine with this setting: (a) Mac OSX 10.9.5; (b) 2.3 GHZ Core
i7; (c) 16 GB RAM; (d) Node.js 0.12.2.

To evaluate the effects of the number of layers on the result of
the algorithms, we executed two families of experiments. In the
first family, for each dataset we randomly selected 8 layers, and
ordered them using each algorithm. Then, for each ordering we
computed a streamgraph with a baseline that minimizes the wig-
gle (either 1-norm or 2-norm) and computed its wiggle value. This
process is repeated 20 times and the average wiggle value is taken.
The second family of experiments is similar to the first, but at every
repetition we randomly selected 50 layers. The only exceptions are
dataset Unemployment and Google, for which we selected 20 lay-
ers because the datasets contained fewer than 50 layers. Algorithm
Optimum was not executed in the second family of experiments,
because it would have taken too long on that number of layers.

7.3. Results

7.3.1. Wiggle Values

Tables 1 and 2 show the results of the first and the second family of
experiments, respectively. Values are normalized by replacing each
value x with x′ = x−min

max−min , where min and max are the minimum
and the maximum wiggle value in the same table row as x. In Ta-
ble 1, min was always the wiggle value of algorithm Optimum. This
algorithm is not shown, since its normalized wiggle was always 0.

Both tables outline that TwoOpt had the best performance, with
the exception of dataset Sandy in Table 1. This confirms our hy-
pothesis that an ordering algorithm specifically designed to reduce
the wiggle produces drawings with a lower wiggle than other al-
gorithms. TwoOptR had variable performance depending on the
dataset, which suggests that starting from a BestFirst layer ordering
gives better results than a random ordering.

While Table 1 shows that the wiggle of TwoOpt is close to
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Table 3: Running times (in milliseconds) of algorithms on 50 ran-
domly selected layers, averaged over 20 random selections. Lower
values (blue) are better than higher values (red).

dataset TwoOpt TwoOptR BestFirst OnSet D3 random ww1a ww2 labeling
unempl. 205.04 190.28 18.25 0.91 3.89 0.02 5.34 2.03 15.86
movies 38.05 32.24 8.57 0.26 1.03 0.02 0.92 0.49 23.05
sandy 64.93 58.85 9.91 0.28 1.23 0.02 1.11 0.67 28.54
stocks 378.25 365.74 30.78 0.69 2.83 0.02 3.64 1.34 48.10

marketcap 688.67 682.19 63.68 1.29 5.48 0.02 7.47 3.20 112.41
google 174.98 165.79 15.71 0.78 2.52 0.02 4.28 0.89 24.35
linux 46.81 36.93 8.04 0.23 0.96 0.02 0.86 0.44 30.99

the optimum, we noticed, by looking at the computed drawings,
that selecting only 8 random layers from a big pool often put to-
gether one or two layers with huge thickness and several very thin
layers, making the results less affected by the layer ordering and
hence less significant for comparing the ordering algorithms. The
results in Table 2 are more representative of a realistic scenario
and we further discuss them. Refer also to the figures in the addi-
tional material, which represent the drawings produced by the var-
ious algorithms on one instance for each dataset in Table 2. Best-
First had very poor performance on datasets Stocks and Google.
In these examples, some thick layers were put at the two edges of
the drawing because they presented relatively high level of wiggle
on specific parts due to their thickness. However, they were im-
pacted by the cumulated wiggle of the many underlying thinner
layers, which caused distortions along the entire layer extent. The
greedy approach of BestFirst could not foresee this type of situa-
tions, which were adjusted by TwoOpt by moving the thick layers
slightly towards the center of the ordering. Dataset Stocks also con-
tained some jumps, for which BestFirst was not designed. OnSet
had excellent performance on dataset Movies, which was expected.
It also had good performance on datasets Unemployment and Mar-
ketcap, where many layers contained on-set points. Correctly han-
dling these allowed OnSet to avoid orderings with high values of
wiggle. On the other hand, in absence of on-set points, OnSet had
poor performance (Sandy, Stocks) which at times are close to that
of randomly ordering the layers (Google, Linux).

We illustrate the effect of ordering and baseline algorithms in
Fig. 9. Clearly D3 (top) has a drifting medium line due to the way 2-
norm handles the peaks of “SAP”, which caused significant distor-
tion to the other layers. Likewise, a drift of medium line is seen in
Fig. 10. Fig. 11 shows the top 20 companies from the same dataset
Marketcap, but from Jun 2001 to Jun 2011. In this figure, the ef-
fect of the ordering is more visible, because the lightgreen (“SAP")
layer in Fig. 11a is placed by OnSet at the center of the drawing,
distorting the other layers.

7.3.2. Running Times

Table 3 shows the running time of the various algorithms, averaged
over all instances of Table 2. From the table, our ordering algo-
rithms are slower than the state of the art, namely TwoOpt and Best-
First are slower than OnSet, D3, and Random, and TwoOpt was the
slowest. Because of its iterative nature, it scanned all layers several
times. Also, we configured it to do a number of layer scans equal to
the number of layers, and a constant number of repeats. The number
of time points in data greatly contributed to the running time of our
algorithms. This is noticeable for datasets Unemployment, Stocks,
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Figure 9: Marketcap data for the top 50 companies from 1995-
2015. Top: D3’s implementation of Byron and Wattenberg [BW08].
Bottom: with TwoOpt ordering and a baseline algorithm that min-
imizes weighted 1-norm wiggle.
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Figure 10: Number of calls on 50 topics to the NYC 311 for the
days before and after hurricane Sandy hit New York City. Left:
D3’s implementation of Byron and Wattenberg [BW08]. Right: with
TwoOpt ordering and the 1-norm baseline algorithm.

Marketcap, and Google, which contained many time points. When
the number of layers and the number of time points are comparable,
our algorithms are cubic in the size of the input (see Section 6 for a
description of the time complexity). The good performance of On-
Set and D3 were mainly due to the simplicity of their logic, which
allowed for very efficient implementations. OnSet performed bet-
ter than D3 because it stops scanning a layer at the first non-zero
value, while D3 performs a full scan. We conclude that considering
the wiggle for ordering the layer requires complex algorithms with
non-negligible running times. However, it is worth pointing out that
running time for each ordering algorithm is below 1 second, which
is acceptable for real uses. The 1-norm and 2-norm baseline algo-
rithms (ww1a and ww2) both take very little time. The labeling
algorithm is also very fast. We did not compare it with the labeling
algorithm of [BW08] since the latter was described as a brute-force
algorithm with “poor real-time performance”, too brief a descrip-
tion to allow a proper implementation.
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(a) on-set ordering, 2-norm base-
line

(b) on-set ordering, 1-norm base-
line

(c) TwoOpt ordering, 2-norm base-
line

(d) TwoOpt ordering, 1-norm
baseline

Figure 11: Top 20 companies from dataset Marketcap, from Jun
2001 to Jun 2011, with different layer orderings and baselines. (a)
The light-green layer is at the center of the drawing, distorting the
other layers. (b) Because of the 1-norm baseline, the distortion
caused by a wrong ordering of the light-green layer is limited to
the lower half of the drawing. (c) The light-green layer “pushes”
up the other layers because of the 2-norm baseline, creating an
upward-going drawing. (d) None of the previous issues are present.

8. Discussion

In [BW08] several design issues of stacked charts are introduced
and discussed. A central consideration is the trade-off between the
readability of single layers and of the total. While a flat baseline
allows for an easy readability of the total, single layers can be sig-
nificantly distorted. The baseline of [HHWN02] produces drawings
that are symmetric with regard to the x-axis, reducing the distortion
of single layers without compromising the readability of the total.
Also, it minimizes the wiggle of the silhouette, making the out-
line of the drawing less “spiky”. However, [BW08] outlines how,
without explicit care, distortions make a layer hard to understand
and also propagate to other layers. Their 2-norm baseline addresses
these two issues, increasing the readability of single layers at the
expense of the global trend. Our 1-norm baseline is a new step in
the same direction. It is designed for better handling layer jumps
and, in general, can produce drawings where the readability of in-
dividual layers is further prioritized. We agree with the implicit as-
sumption of [BW08] that such a property is desirable, but believe
that applications should be evaluated case by case, based on data
and user tasks, to determine the most appropriate trade-off between
the readability of layers and of the global trend. We note that both 1-
norm and 2-norm are reasonable definitions of wiggle to use when
there are not sudden jumps. However, it is not clear to us which def-
inition, or an alternative definition, correlates best with the human
visual perception of wiggle. For example, in the current definitions,
wiggles are additive over time. A time series {y,y+1,y+2} is con-
sidered to have the same wiggle as {y,y+1,y}, but perceptually the
former is smoother, while the latter represents a spike. Thus a wig-

gle definition based on both first- and second-order derivatives may
be more expressive, but possibly harder to optimize.

BestFirst in combination with TwoOpt, in our experiments,
proved to be an effective ordering algorithm for generic data. How-
ever, we believe that OnSet produced more pleasant drawings on
the movies dataset, with layers that appear to “flow” towards the
center and a general organic look of the drawing (see the addi-
tional material). This is not surprising, since OnSet was specifi-
cally designed for this type of data. We also noticed that BestFirst
and TwoOpt tend to put thin layers at the center of the drawing – a
visually prominent position. This can be aesthetically undesirable,
because thick layers tend to be more important than thin ones. It
could be beneficial to modify the ordering algorithms to take into
account layer thickness. Finally, although the metrics in our exper-
iments showed differences, we did not see significant differences
visually between the drawings produced by the various ordering
algorithms on datasets linux and google (see [DH]). This could be
due to the low variability in the shape of the layers of those datasets,
and implies that in some applications the higher running time of
complex algorithms like TwoOpt may not always be advantageous.

In the presentation of our fast layer labeling algorithm, for sim-
plicity we assumes that labels have integer width. This is reason-
able for time series with hundreds or more points, for which integer
width is fine-grained enough. For time series with few points, if a
feasible position for a label is not found, our algorithm adaptively
interpolates the time series by doubling the number of points, and
applies the layer labeling procedure to the new time series, until a
feasible position for the label is found. This effectively makes the
label width a floating point number.

9. Conclusions

The aesthetics of a streamgraph is affected by the ordering of the
layers, the shape of the baseline of the drawing, and the labeling for
the layers. This paper advances the state of the art for streamgraphs
by proposing an ordering algorithm that works well regardless of
the properties of the input data, a 1-norm baseline procedure that
overcomes the distortion associated with the existing baseline algo-
rithm, particularly when there are sharp changes in the time series,
and an efficient layer labeling algorithm that scales linearly to the
data size. We demonstrate both qualitatively and quantitatively the
advantage of our algorithms over existing techniques on a number
of real world data sets.

As far as we know, streamgraphs have been used exclusively for
time series with only positive values. The feasibility of using them
to visualize time series with both positive and negative values re-
mains an open problem.
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