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Abstract. In this paper a general optimal conditioning problem for updates which satisfy the quasi-Newton
condition is solved. The new solution is comprised of a family of updates which contains other known
optimally conditioned updates but also includes new formulae of increased rank. Ways of implementing the

new updates are discussed and some numerical results are given.
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1. Introduction

Consider the unconstrained optimization problem,
i, f(=).

Quasi-Newton methods (see, e.g., Fletcher, 1987) decide the new search direction d*, at each iteration,

by

dt = —H*g*,

where zt is the current point, g* = Vf(z*) and H* is an approximation to {V2f(z*)}~1. H* satisfies the

quasi-Newton condition

Hty =34,

where v = gt — g, § = z+ — z, z is the previous point and g = V f(z). There is, of course, much freedom
in the selection of HT, even though the quasi-Newton condition is satisfied, and other desirable properties

such as symmetry and positive definiteness can be imposed on H.

An important family of formulae for deriving H* from the previous matrix H (H is said to be “updated”

to H*) is the self scaling Broyden family of updates, which has the form

HyyTH - - 86T
HE = H— ——— H —_— 1.1
B(¢: E) 5 ( "}’TH"}/ + ¢ Y yvv + 6T"}” ( )
where
6 Hy

CT ey THY
£ is the scaling factor and ¢ a free parameter. Clearly Hg((ﬁ, £) is symmetric if H is symmetric and, writing
7T Hy _ §TH™16
6T’ 8Ty
then, provided §Ty > 0 and H is positive definite, Ht (¢, £) is positive definite if f

b=

- 1
$> 0= T
Three well-known members of the family are the BFGS, DF P and symmetric rank one updates, which are

given by ¢ = 1, ¢ = 0 and ¢ = 1/(1 — b¢) respectively. When ¢ = ¢, HE (¢, &) becomes singular.

Recent interest in quasi-Newton methods has concentrated on updates with ¢ > 1 following the extension
of global convergence results for BFGS (Powell, 1976) to all updates with ¢ € (0, 1], £ = 1 (Byrd, Nocedal
and Yuan, 1988). Optimal conditioning of H~ %HEH_% by suitable choice of £ and ¢ was studied by several
authors (Oren and Luenberger, 1974, Davidon, 1975 and Oren and Spedicato, 1976) but they confined their
discussion to either ¢ € [0, 1] or £ = 1. More recently optimal conditioning, without these restrictions, has
been studied by Al-Baali (1990), Luksan (1990), and Hu and Storey (1991). It was found that the spectral

. _1 _1. C ..
condition number K of H™ 2 HEH 2 is minimized on the curve

h
L1

¢*(£): bh — 1’ 5— S£S£+:
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where

g‘i:h(lzl:“l—bi), (1.2)

and that,
7 2
K*:I(Ei?K(H_EH;H_E):bh(l—i— 1—5) .
In this paper we solve the more general problem
min K (Z_1H+Z_T), (1.3)

H+

Hty =4,

subject to
! {H+:H+T, HY >0,

with Z non-singular and ZZT = H. We establish that the solutions of (1.3) form a family of updates,
containing those updates in the Broyden family defined by ¢*, but allowing the rank of Ht — £ H to extend
up to n.
2. Preliminary Results.

We first consider the connections between the condition number of a positive definite matrix and those
of its principal submatrices and have the following lemmas.
Lemma 2.1

The eigenvalues of the leading principal submatrix of order £ — 1 of a symmetric £ x £ matrix A separate
the eigenvalues of A.
Proof

See Wilkinson (1965), page 103.

Corollary 2.1

If B is a leading principal submatrix of any order of a positive definite symmetric matrix 4 then

K(B) < K(A).

Proof

This follows directly (by induction) from Lemma 2.1 and the positive definiteness of A.

Lemma 2.2

Let A € RUHDX(H1) ¢ > 1 be a positive definite symmetric matrix such that

4 ( B u)
C\uT o«
with u € R*, o € R and B = diag (@1,..., o), then a necessary condition for K(4) = K(B) is that all u;

corresponding to @max and amin, the greatest and least eigenvalues of B, are zero and api, < o < @max-

Proof



If &tmin = @max then K(B) = 1 and, since 4 is positive definite, K(4) = K(B) only if A = aminl, giving

© = 0 and @ = @iy as required.
Now assume apijn < @max and consider a 3 x 3 principal submatrix of A
(a7 0 U;

C: 0 a]- u]-

Ug Uy [

where & = @min, @ = @max. By Corollary 2.1 K(C) < K(A) and so

K(C) < K(A) = K(B) = 2=max, (2.1)

Qmin

Assume that the eigenvalues of C are 8; < 2 < 3, then by Lemma 2.1,

0<B1 < <P <a; <P (2.2)

Consider the determinant

with

PO) =A—a- 1o

)\—Oz,' )\—OL]',

so that any root of p(}) is an eigenvalue of C. If u; # 0 then, as p(A) — —oco when A — —oo and p(A) — 400

when A — o, there must be a root in (—oo, ;). Thus from (2.2), 0 < £; < a; and so

Pa g @ _ Cmax _ gy (2.3)

B /31 (27} Qmin

K(C)

which contradicts (2.1). If u; # 0, a similar argument leads to (2.3) again and contradicts (2.1). It follows
that all elements of u corresponding to the greatest and least eigenvalues of B must be zero. But C is then

diagonal and so satisfies (2.1) only if amin < @ < @max. O

Lemma 2.3

Let A € R™*™ be symmetric, positive definite and

Ao ( B U)
~\vT D
with B € R™*™, U ¢ R™*(»-m™) D ¢ RM-m)x("-m) with m > 1. Then K(4) > K(B) and if m = 2
equality holds zff U = 0 and the eigenvalues of D lie between those of B.

Proof

Since B is a principal submatrix of A we have K(4) > K(B) in general. Now let m = 2.
Since B and D are symmetric we can let B = QT B Q, D = QT DQ where B, D are diagonal and
Q € R™*™, Qe R(»—m)x(n—m) are orthogonal. Let U = Q U QT then the eigenvalues of A are equal to
those of



C_(B ﬁ)
“\o7 b

and so K(4) = K(B) iff K(C) = K(B). Thus any of the principal submatrices of C containing B has the
same condition number as B. Since B is 2 x 2 and diagonal its two eigenvalues are the greatest and least
respectively and so by using Lemma 2.2 inductively on a series of bordered diagonal matrices, containing B
and of order 3,4,...,n, we find that K(C) = K(B) only if U = 0 and the eigenvalues of D lie between the
greatest and least eigenvalues of B. This proves the “only if” part of the lemma. The proof of the “if” part

is immediate. O

Note 2.1 The conditions for K(4) = K(B) in Lemma 2.2 are necessary only. The conditions for
K(A) = K(B) in Lemma 2.3 do not necessarily hold for m > 2.

We now give a result concerning the minimum value of the condition number of a 2 x 2 matrix.

Lemma 2.4

t
Let A = ( s) be positive definite with ¢ and s fixed real numbers and r a parameter. Then K(A4)
s r

is minimized if r = (t? + 2s?)/t and, at this minimum the eigenvalues of A are

B t2 + 5% + sv/12 + s?

A:i: n ’
with
A V(t/s)2+1+41
min K(4) =2t = M
T A (t/s)2+1-1
Proof

dK(A)
dr

It is easily seen that =0iff r = (t* + 2s%)/t and the rest of the proof follows.

3. A Family of Optimally Conditioned Updates

A technique used by Ip (1987) is now adapted to solve problem (1.3) by using an orthogonal
transformation to reduce the vectors ¢ and é to their simplest possible forms as follows. Let € be any

orthogonal matrix that satisfies

00 ... 0\"
a7 (27, 26) = ( ) (3.1)
B8 p 0 ... 0
then if g;, ¢ = 1,...,n, are the columns of 2 we see that

a=+/~vTHy, (3.2)

ZT
g = ——, (3.3)
VT Hy
_ 67
B=(27'6)"aq = 7;;{7, (3.4)



5T )2
_  |sTH—1 _( 7
p= \/5 H6— (3.5)

and

g5 T g
THy "7
g2 = " (3.6)
sr-15- &7
vTHy
If now we let
At =0Tz 'HtZ TQ (3.7)

then, since the spectral condition number is invariant under orthogonal transformation, (3.1) implies that

(1.3) is equivalent to

mI:IiJrn K(HT) (3.8)

, {ﬁ+(a,o,...,0)T:(ﬂ,p,o,...,o)T
subject to . T .
Ht=Ht", H*>0.

Our main theorem follows.

Theorem 3.1

The minimum value of the condition number in (1.3) is K* and the solution of problem (1.3) is the

family of updates

HY =HL (¢"(€))+)_ (&€ & 7, (3.9)

where,

and

cori2yi D).

In (3.9) the z;, i = 3,...,n, are the columns of Z = ZQ where  is any orthogonal matrix satisfying (3.1).

Proof

Let H+ = (hij), 4,7 =1,...,n, then

hllzg; h21:h12:£, hiiy=h1;=0,:1=3,...,n. (310)
[87 [87

Write



3 hll h12
h12 h22

then, by Lemma 2.2,

K (fﬁ) >K (ﬁ;;)

so that for any H* satisfying the constraints in (3.8) and any ET;; satisfying (3.10) we have

K (H*) > min K (£3;) . (3.11)

h22

By Lemma 2.4 K (I;G;) is minimized if

R} +2h},  B%+20°
hi1 o

and the eigenvalues of ﬁ2+2 are then, by Lemma 2.4, (3.2), (3.4) and (3.5),

h22 =

(3.12)

£y = ki1 + h3y & hiay/hY, + A,

hll

(i)

Again, from Lemma 2.4, by using (3.2), (3.4) and (3.5) it is seen that min K (ﬁ;z) = K*.

22

By Lemma 2.3, (3.11) holds with equality iff (3.12) holds and HT is of the form

r=(% 1)
0 D

with the eigenvalues of D lying between £_ and ¢,. Let D = Q7 diag (&3, ...,&,)Q where @Q is orthogonal

and

6— SEiSE-H 7’:3::77'

I 0 i+ T 73 -1 -T : :
Let R = 0 QT and set ; = QRand H = R HTR=0Z"'H+*Z-7Q,. Then Q; is again orthogonal
and satisfies (3.1). Hence we have
Bla pla O
ple (B +2p%)/ap
A = & : (3.13)

O
3

and now

HY = ZQ, QT 77,
Let Z = ZQy = (Z1,...,2y,) then as Q; is orthogonal, we have

6



z72* =777 = H (3.14)

and
_ 00 0\”
Z%(y, H'6) = (; . 0) (3.15)
p
Thus from (3.3) and (3.6)
H
z1=2q1 = f’;{’ (3.19)
Y Y
T
6 — 6y Hv~y
_ vyTHy
Zy — Zqz = T 2 . (317)
sra-15- &7
v Hy
In terms of Z we have
HY = 2+ 5T
_ . (Bl ple zy . 7
= (21 z2) ( _ + & z; z; .
ple (8% +20%)/eB) \z5 2_;
and since ZZT = H it follows that
_ _(Bla—¢ pla ) (z‘T) = o
HY = ¢H 1 P A T
ens ) (706 o) ()X 6053
=H;+ H, (3.18)

where H; denotes the first two terms of Ht and H, the remaining term.
By (3.15) we know Hyy = 0 and therefore Hyy = §. We now examine H;. It is easily seen that
1 1
(Ma—£ ple )_ 5t RV
pla (8 +2p%) /e — & L/bh—l 2h—l—§
b b

- +TH - §TH;'S h .
Assume£>0,denoteH0:§H,b:7 Ofysza,ndhzﬁ 06:—,thenbh:bhand
8T 6Ty 3

1 1
S I
1 1 T

gV =1 2h— 3 —¢

Hy=¢ H+(Z z)

23

T 1 1 =
5— 7 Hyy Y
=Ho+ | _Hov v Hoy . b b )
VITEY \[6TH; S — (679 Hyy ) \§ VBR—1 2h—7 -1
15T")’ T
§— 7 Hyy
x Hoy 7" Hoy . (3.19)

VY HOY | 6T Hy 5 — (674)? /47 Hoy
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Thus, H; can be written as

Hy = Ho+ a168" + az (Hoy8" + 67" Ho) + azHoyy" Ho

and satisfles Hyy = 8, so it must be of the form (see, Fletcher, 1987, p.62),

Hyy"Ho 887 pp (L_ Hoy )(L_ Hoy )T
YyTHyy — 6Ty 6Ty ~THyy) \6Ty T Hoy

= HE(6,€). (3.20)

H{=Hy—

The parameter ¢ can be found by matching the coefficient of any term in (3.20) with the corresponding
term in (3.19). Taking the coefficient of §67 we obtain,

- 1
2}1,—3—1 B 1 +¢,YTHO,.Y
5T H 15— (6Ty)2 6Ty 7 (6T9)%’
vT Hoy
so that
_ 1 _ .
2h—z—1=h—z+¢(h—1)
or
h
- 2
h—1 E *
= -1 o1 *©
Therefore (3.20) becomes
Hy = HZ (" (€),€)- (3.21)

Obvious changes show that (3.21) is also true when ¢ < 0. Its validity for £ = 0 follows by continuity.

Therefore by (3.18) and (3.21) we have proved that the minimum value of K is K* and that any solutions
of (1.3) must be of the form (3.9). Conversely, Let H* be any member of (3.9), that is,

H* = HE(#'(€),6) + ) (& — Oz,
i=3

where £ < € <€y, 1 <i<m,and 7, 1 <i<n, are the columns of Z = ZQ with Q an orthogonal matrix
satisfying (3.1). Then Z satisfies (3.14) and (3.15), thus H*y = § and z;, Z» are given by (3.16) and (3.17).

Therefore from the previous part of the proof

3 —¢ %\/m T
HE(¢°(6),€) = ¢H + (2122) | | 1 (;T)
3 bh—1 2h-— 5 —¢ 2

and so



=Z & "
€n
= ZQHT QT Z7.
Thus Ht is symmetric positive definite, satisfies Hty = § and K(Z"1H+tZ"T) = K(H*) = K*, so it is the
O

solution of (1.3).

4. Factorizations of Quasi-Newton Updates
iFrom the proof of Theorem 3.1 it is clear that any update in (3.9) can be written as
HY = ZQHAYQTZ7, (4.1)

where ZZT = H, Q is an orthogonal matrix satisfying (3.1) and

voamor O

L/Bh—1 2h-1
:é‘—Sé‘zSg-}-: ’1,:3,,1’1, (42)

€n

In fact, any member of the self-scaling Broyden family (1.1) can also be written in the form (4.1) with Z

and Q defined as before and

O

SR O/
i VbR —1  2h—f+(¢— ") (bh—1)
H* = ¢ , (4.3)
O
£
or equivalently,
O W = O
% bh — 1 h—%+£—|—¢£(bh—1)
Y = 13 : (4.4)
O
£



Both (4.2) and (4.3) are clearly contained in the more general expression

1 1
- —+vbh — 1
b b O
1 1
i gfbh_l h—g+£+¢€(bh—1)
Ht = 4.
& (45)
€n
The right-hand side of (4.5) can be factorized, provided £ > 0, ¢ > pand & >0for3<i<mn,as Ht = LLT
with ( 1 0
Vb
vbh — 1
——— VE&J/1+¢(bh—1)
L= \/I;

Ve

O 5
\ /%

and thus H+ = ZH+ZT = 2+ Z+" with Z+ = ZL. Because of (3.16) and (3.17), we have

Zt = 6 , VES1+ ¢(bh— 1) z3, /€323, VEnZn | - (4.6)
6Ty

Formula (4.6) is a useful factorization for quasi-Newton updates. If & = £ for 3 < ¢ < n, it gives a
factorization of the self-scaling Broyden family (1.1). If ¢ = ¢*(§) and - < & < &4 for 3 < i < m, it gives
a factorization of the family of optimally conditioned updates (3.9). In general it gives an update formula
which allows the rank of Ht — (¢ H to be up to n.

It is interesting to notice that a very similar factorization of the Broyden family was proposed by Siegal

(1991) using a different approach. He considered orthogonal matrices 2 satisfying

a; 0 0 ... O)T

0T (z7%, 2T4) = (
( ’Y) az as 0 ... 0

instead of (3.1), and found that (1.1) can be factorized as Ht = Z+Z+" with

6 bh — 697
Z+ = <\/m: \/E W (I_(SZ—’}/) 22: \/523:"':\/Ezn): (48)

where Z; are columns of the matrix Z = Z9.

We have seen that factorization (4.6) results from an LLT factorization, with L lower-triangular. We
now show that (4.8) results from a UU7T factorization, where U is upper-triangular. Let Z = ZQ with Q
satisfying (4.7). Then the Broyden family (1.1) can be written as Hj = ZH*Z7T with

Bt =0Tz 'H{zZz7TQ
=T F2T
_ Y - T--T 667 >
=e(1- e ) i
where § = QT Z716 = (a41,0,...,0)T, 7 = QT ZTy = (a3,0a3,0,...,0)T and 7 = §/6T7 — 7/47 7.

10



Basic calculations show that a; = (ETH_lﬁ)%, az = 6T7/(6TH_16)%, az = (YTHy— (5T7)2/5TH_15)%

and the first two columns of the matrix Z

5
PR 4.10
LT VeTH 15 (4.10)
6Ty
Hy — 76
= STH§ (4.11)

Substituting a1, @z, as into (4.9) gives
h4 LEEBRZL) (1) _1HO0RZL) R g

S| T e O
= ¢

O

If we factorize H* into UUT with U upper-triangular, then
1+¢(bh—1
VB ey

VE /1+q>(bl;lh—1) 0

U= VE . (4.12)
O

VE

Thus H* = Z+2+" with 2+ = ZU. Combining (4.10), (4.11) and (4.12) we get (4.8).

5. Numerical Implementation

In this section we discuss a way of implementing the quasi-Newton methods given by (4.6). For this
purpose we need to find an orthogonal matrix Q satisfying (3.1). Since H~'§ = Ag where ) is the step

length, (3.1) can also be written as

0 0 ... 0\7F
QTZT(%Q):(* . 0 0) : (5.1)

({3

where “x” is used to denote those elements of matrices that may not necessarily be zero.

Following Powell (1987), we will form the matrix € using multiplication by a series of Givens rotations.
We shall denote Q;;41(1 < 7 < n — 1) as the Givens rotation matrix that differs from the unit matrix only
in its ¢-th and (¢ + 1)-th row.

Our implementation is similar to Algorithm 1 of Siegel (1991a). Let Z = ZQ. At z(**+1), (5.1) shows that
the last n—2 elements of Z(k)Tg(k+1) are zero, so that by (4.6) the last n—2 elements of Z(k‘H)Tg(k‘H) are also
gzero. Let ['(*¥+1) — Q3,2 be the Givens rotation which makes the 2nd and 1st elements of rk+1)" Z(k+1)Tg(k+1)

zero and positive respectively. Let Z(k+1) — Z&+Dp(E+1) then clearly the new search direction is
dk+1) — _Z(k+1)Z(k+1)Tg(k+1) _ _2§k+1)2§k+1)Tg(k+1),

where z":(lk-H) denotes the first column of Z(¥+1). At z(¥+2) we have
Z"(k+1)'1'g(k+1) || e1, (5‘2)

11



where e; = (1,0,...,0)T. Let Q(+1) — Q10 _2n-1...1,2, with Q; ;41 the Givens rotation that
makes the (74 1)-th and -th elements of the vector Qg:i+1
respectively. We know Q(**1) is lower-Hessenberg and thus using (5.2) we have Q(k+1)TZ(k+1)Tg(k+1) =

(%, %,0,...,0)T, therefore

Qg‘+1,i+2 .. .Qn_lvnz(k‘*l)T’y(k‘H) zero and positive

T
Q(k+1)T2(k+1)T(7(k+1),g(k+1)):(* 0 0 ... 0)

* x 0 ... 0

Let Z(*k+1) = Z(:+1)Q(*+1)  we can form Z(*+2) as in (4.6), and the process can now be repeated.

The complete algorithm is given as follows:

Algorithm

step 1 Let (1) be a starting point and Z() be a nonsingular matrix (see later for a possible choice of
Z(M) satisfying
ZW7 M = (,0,...,0)7.

Let k = 1. If ||g(!)|| = 0 then stop.
step 2 Form search direction d(¥) = —Egk)igk)Tg(k).
step 3 Line search to get z(*+1) = z(*) 4 X(B)d(®) if ||g(¥+1)|| = 0 then stop.
step4  Let §() = g(k+1) _ g(k) (k) — g(k+1) _ g(k) 5(B) — Z(k)" (k)

k) = s(B)7 5(k) /5(B) (k) and hk) = —A(K)§(R)" g(k) 5(k) y(R),

step 5 Let Q) be the product of Givens rotations such that
QF) 5®) = (4,0,...,0)7.

Now we actually have

T T £ 0 0 ... 0\
Q)" ) ('Y(k):g(k)):< ; 0)

* ok

step 6 Let Z(¥) = Z(&)Q%)
step 7 Let

(x)
Zk+1) — (75 : \/6(’“)\/1 + ¢® (bE RE) — 1)z /(B 5(H),

8(k)T (k)
v
...,\/&’“)z‘g’“)) . (5.3)

step 8  Let I'**1) be the Givens rotation such that F(k+1)TZ(k+1)Tg(k+1) || e1. Here Z(k+1)Tg(k+1) =
T T ~
(z§k+1) g(k+1),zgk+1) g®t.0,...,0)T. Let Z*+1) = Z(E+O)PE+Y) k.= k 4 1, go to step 2.

The main operational costs of the algorithm come from step 4, the calculation of s(¥) = Z(k)T’y(k),
which needs n? multiplications, and from step 6, the multiplication of Z(*) by a sequence of Givens rotations

Qn_1n, Qn_2n-1,...,Q1,2, which can be done in about 3n? multiplications (see Powell, 1987). The scaling

of the columns of Z(*+1) by \/Ez(k) in step 7 can be combined with step 6. Thus the whole algorithm needs

about 4n? multiplications per iteration.

Like the BFGS algorithm of Powell (1987), the algorithm has an interesting property, namely, when

working on quadratics with exact arithmetic, the second to the (k + 1)-th columns of the matrix Z(k+1)

12



are parallel to the k past search directions, and all search directions are conjugate to each other, thus the

algorithm has the quadratic termination property. This is proved in the following theorem.

Theorem 5.1 Suppose the Algorithm is applied to a quadratic function with positive definite Hessian
G € R™*™. If the line searches are exact, ¢(¥) > ¢(*) £(*) > 0 and 5@(’“) >0 (3 <i<n),then the algorithm

will terminate within n steps.

Proof

We prove by induction on k the following results. At the iterative point z(®+1) (k > 1), if || g*+1) || £ 0,
then

61, 6@ . 6% are mutually conjugate, (5.4)
2§k+1) — 4 /H;:S £J(k—i+j) 5(k+2—i)/\/5(k+2_i)T,y(k+2—i), 2<i<k+1, (5.5)
TG Z 0, 2<i<k41, j=1or k+2<j<n, (5.6)
and
Z(*¥+1) is non-singular. (5.7)

At 2 (k = 1), (5.4) is vacuous.

Because Z(1) = Z(WQM) ig non-singular, and by step 5 6(1) is conjugate to z_gl), 1= 2,3,...,n,
so from (4.6) the first column of Z() is conjugate to the rest of the columns (which are multiples of
2—1(1), i = 2,3,...,n), thus Z?) is non-singular and so is 7@ = z@T(?), Therefore (5.7) is valid for

k=1.

Since

(1)
7 = (75?1? ot VED /14 6MORO - 1) 20, (/¢! zél),---,\/gﬁ”zﬁ”),
V Y

because of exact line search, in step 8 we have

T

737 g(2) = (0, \/5(1)\/1+¢(1)(b(1)h(1) — 1)z ), o,...,o)

Thus the Givens rotation I'(?) differs from the unit matrix only in its leading principal 2 x 2 matrix,
with I‘(lzl) = I‘g22) = 0 and |I‘(12;)| = |I‘g21)| = 1. Therefore Z() = Z(T(?) is the matrix derived from
exchanging the first and second columns of Z(?), with possible sign changes in the two columns and so

252) =4 5(1)/(6(1)T7(1))%. Hence (5.5) is valid for k = 1, and (5.6) is also valid for k& = 1 since 6(1) is
5(1)

conjugate to z;77, 1 =2,3,...,n.

Now assume (5.4), (5.5), (5.6) and (5.7) are valid for some k > 1 and assume ||g(*+2)|| # 0 so the
algorithm does not terminate at z(¥+2), Then Z(¥+1) = ZE+1)Q(k+1) g non-singular, and so is Z(*+2) since
8(+1) is conjugate to the linearly independent vectors z_gk+1) (2 < i< n) by step 5 of the algorithm. Thus
Z(k+2) — z(k+2)p(k+2) g non-singular. Hence (5.7) is valid with k replaced by k& + 1.

Since (5.6) shows that 2§k+1) is conjugate to Z§k+1) (2 < i< k+1), by (5.5) it is conjugate to the
previous k search directions. Therefore by step 2, d(*+1) is conjugate to the previous k search directions and
so (5.4) is valid with k replaced by k + 1.
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At z(®+2) because by (5.5), the 2nd to the (k + 1)-th columns of Z(*+1) contain the first k search

directions, and since §(**1) is conjugate to these directions the vector s(*+1) = Z(k+1)T'y(k+1) is of the form

(504D, 0,0, skED 0T

Spaa 1 . So during step 5, we have

k

——
OF orpa-- 0T D = (8D 57 0,a%+0 0, ., 0)7,

where a(+1) — (Z?:k+2 (s§k+1))2) * . Notice that a(*+1) # 0, for otherwise s£k+1) = 2§k+1)Tfy(’“+1) =0
(2 < i < n), and Z§k+1)Tg(k+1) = 0 (2 < i < n) because of step 8 of the algorithm, so we have
z"lgk-H)Tg(’”z) =0 (2 < i < n). Since d*+1) || z"gk-H), exact line search gives 2§k+1)Tg(k+2) = 0. So
Z(k+1)Tg(k+2) = 0, which is contradictory to the non-singularity of Z(*+1) and the assumption that
[ g(k+2) || # 0. Hence Qg41,5+2,..., 2,3 are all Givens rotations that are derived from exchanging the -
th and (¢ + 1)-th (2 <4 < k+ 1) columns of the unit matrix, with possible sign changes in the columns. So
Q(E+1) ig of the form

* % 0 0 0 0
0 0 +1 :
S0 .0
Qi+ _ [0 0 . 4100
* ok 0 =*
Sk 0
foe 0 e 0

A 7 x 7 example of Q*+1) would be as follows (assume n =7 and k = 3)

—_
—_

QE+1) —

* K kO O O ¥
¥ O O O O ¥
OOOOOH_O
OOOOH_OO
OOOH_OOO
=
¥ O OO OO
¥ O O OO OO

Therefore Z(*+1) = Z(k+1)Q(k+1) hag the property that

Z_Z(k+1) _ ZZ(ETI) -+ /H;"_:;:li €J(k+1—i+j) 6(k+3—i)/\/6(k+3—i)’1'7(k+3—i), 3<i<k+2, (5.8)

and these k columns are by (5.6) conjugate to the rest of the columns of Z(®+1) which are linear combinations

§k+1) and z~](-k+1) (k+2<j<n).

of Z

Now at step 7 of the algorithm, we have

Z(k+2) _ L /¢E+T) \/1 + g1 (bR +DR(E+1) _ 1)z D)
= %S(kﬁ-l)’r»y(ki-l)’ Zy )

£I(Sk+1)21(3k+1): ey ££k+1)2£k+1)) '
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So the 3rd to the (k + 2)-th columns of Z(E+2) are by (5.8)

254 /€§k+1) 2k )
. /H;'::s £J(k+1—i+j) 5(k+3—i)/\/6(k+3_,~)f,y(k+3_i), (5.9)

3<i<k+2,

and we know that these k& columns are conjugate to the rest of the columns. The first column is conjugate

to all the other columns because of step 5.

T
Because of exact line searches, Z(k+2)Tg(k+2) = (o, z§k+2) g(k+2), 0,...,0)T, so using the same
reasoning as before the matrix Z(*¥+2) ig derived by exchanging the first and second columns of Z(*+12),

with possible sign changes in the two columns. Therefore

5§k+2) = +6F+1) /4 /§(k+1)T (R +1)

and
FRHD ) 3 oo

which together with (5.9) shows that (5.5) is valid with k replaced by k + 1. The fact that the 2nd to the
(k + 2)-th columns of Z(+2) are conjugate to the rest of the columns shows that (5.6) is also valid with k
replaced by &k + 1.

By induction (5.4), (5.5), (5.6) and (5.7) are true for all k such that || g®+1) || # 0, so (5.4) and exact

line searches show that the algorithm will terminate in at most n steps. O

Theorem 5.1 shows that even with arbitrary scaling factors fgk) > 0 (3 < i < n), our algorithm
still has the quadratic termination property theoretically (It is also possible to prove this result for
Algorithm 1 of Siegel (1991).). However in practice using small scaling factors (smaller than 1) at every
iteration can cause the algorithms to lose the quadratic termination property. The reason is seen as
follows. In the proof of theorem 5.1 we have shown that the vector s(*+1) = Z(*+1)(k+1) ig of the form

1
(s(1k+1), 0,...,0, sgf:;), ceey s%k+1))T, and a*+1) = (E?:k_'_z (s§k+1))2) : # 0. But with finite arithmetic,
the zero elements of s(*+1) can be nonzero numbers of small magnitude and because of small scaling factors
in the current and previous iterations, the columns of Z(*+1) can also be of small magnitude. Thus a(¥+1)

can be of the same magnitude as s£k+1), 1= 2,...,k+ 1. This causes the proof of the theorem to break
down and the algorithm can take more than n iterations to converge, if it converges at all. Our numerical

experience however indicates that large scaling factors do not cause so many problems.

We now discuss the scaling factors gl(k), it =13,...,n. If the optimally conditioned family (3.9) is to be
used, then since ¢(¥) = (A(F)/£(F) — 1)/(b(F)A(K) — 1), we see that

§(k)
(k41) (9 Spm)FE) | [e(R) (k) 1/ ¢(E) (k)
Z ( 5(k)T,y(k)’ hE)Z A €37 Z5 .. V& TZ), (5.10)

where 5(_k) < Ezgk) < Eg_k) (3<i<n)and 5(_k) and £S_k) are given by (1.2). There is still a lot of freedom in
choosing the fgk) and so we investigate ways of specifying them. Incidently, noticing that the first and second
columns of Z(**1) are independent of the scaling factors £’§k), this together with step 8 of the algorithm shows

that the search direction d(*+1) is also independent of the current scaling factors flgk).

One possibility is to find the least change update
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min | WY H®D - FEYW T ||¢
subject to E(_k) < 51@) < £ik), 3<i<n

where H() = z()z(®)" and 2 is given by (5.10). If we take W = Z(*) in view of (4.2), the solution
is obviously to take gzﬁk) to be the number in the interval [f(_k),fik)] that is nearest to 1. The resulting
algorithm will be denoted as [LCHANG].

Since, as previously mentioned, small scaling factors can cause problems on quadratics, and in their
implementations of the BFGS method, Powell (1987) and Siegel (1991 b) found that scaling columns up can
be efficient when the Hessian of the function to be minimized is nearly singular at the minimum, we will
also try to use the freedom in fgk) to scale the columns of Z(*+1) up if their magnitudes are small compared
with that of the first column.

So we let Ezgk) (3 < ¢ < n) be the number in the interval [f(_k),f_(‘_k)] that is nearest to
max{1, || z§k+1) 12/1] ng) |I*}. The resulting algorithm is denoted by [SCAUP]

We compare these two optimally conditioned algorithms with five other algorithms as follows.

1. The BFGS algorithm [BFGS], that is (5.3) with £®) = 1, ¢ = 1 and ¢®) = 1.
2. The optimally conditioned BFGS algorithm [OCBFGS], that is (5.10) with £*) = 1/b(*),
3. The BFGS algorithm with initial scaling [INIBFGS], that is (5.3) with £®) = 1/b(®) ¢®) — 1/p(k),

#*) =1for k=1, and £*) =1, 51“) =1and ¢®*) =1 for k > 2.

4. Davidon’s (1975) optimally conditioned algorithm [DAV], that is (5.3) with £(*) = 1 and fgk) = 1. Then
¢®) = (A — 1)/(6®R®) — 1) if ¢-F) < 1 < ¢+*) and ¢*) = 1/(1 — b(*)) otherwise.

It was found, by Hu and Storey (1991), that if K denotes the condition number of H-:HtH 3 with
H* Davidon’s (1975) optimally conditioned update, then

1
K/K* < _ 1;.
/ —m“{min{b,h}’ }

Furthermore, K/K* can be arbitrarily large if min{b, h} is sufficiently small. Thus we will try a modified
Davidon algorithm [MDAV] given by the following choice of parameters.

5. If 5*) > 0.1 and A(*) > 0.1 then [DAV], otherwise set £*) and 52“) equal to the number in the interval
[ﬁgk),ﬁik)] that is nearest to 1 and ¢*) = (A(®)/¢(®) — 1)/(b*)A(K) — 1). This scheme ensures that
K/K* < 10.

We implemented the seven algorithms on a HP 9000/870 computer with double precision in FORTRAN.
The algorithms only differ from each other in the choice of parameters £(*), 52@) (3<i<mn)and #*). The
initial matrix Z(1) is taken to be the product of Givens rotations such that Z(l)g(l) = (x,0,...,0)T, so the
initial H-matrix is the unit matrix (H(l) = ZzWzW* — I). The line search routine we use finds a step

length A(%) satisfying

f(z(k) + )\(k)d(k)) < f(z(k)) + 10—4)\(k)g(k)Td(k)

and

| g(z®) + AEGENT g(k) | < 0.9 | g*)* g(®) |

If during the line search the length of the interval in which the final step length is predicted to lie

becomes less than 107 !%, then the line search is assumed to fail. The initial step length is always taken as
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one except when k = 1, in which case we take it as max{2, (EST — f(k))/g(k)T d®)} where we set EST equal

to zero.

To test the algorithms, we use the first 31 test functions of Moré et al. (1981). These are all sums of
squares with the number of square terms either as given, if a number is recommended in their paper, or is
set to 100. Standard starting points are used. The stopping criterion is || g**+1) || < 10~% max{1, ||z*+1)||}
for all the algorithms.

Table 5.1 contains the number of iterations (the number of function evaluations) for the seven algorithms
on the 31 test functions. We use “F2” to denote failures due to the line search, “F3” to denote failure due to
overflow of functions (gradients). To summarize the results we add the number of iterations (the number of
function evaluations) of the seven algorithms on 28 function and list the totals in the last row of the table.

In doing so we do not count functions 6, 10 and 17 on which some algorithms failed.

iFrom the table we can see that [LCHANG] and [MDAV] perform very well. The simple BFGS algorithm
with initial scaling [INIBFGS] also does very well. [OCBFGS], [DAV] and [SCAUP] all improve a little over
[BFGS] although they are not so good as [LCHANG], [MDAV] and [INIBFGS]. On function 10 although
[BFGS], [DAV] find a point satisfying the stopping criterion, the point is actually not the minimum.

Overall we also see that algorithms with some kind of optimal conditioning tend to be more reliable.

It is slightly disappointing that the algorithm [SCAUP] that attempts to scale up small columns does
not work very well. But we expect that such an algorithm will be more useful when the initial matrix or the

Hessian at the solution is nearly singular.

The sucess of [INIBFGS| and [LCHANG] seem to inidicate that although optimal conditioning is

important, it is also important to force the scaling factors to be close to unity.
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Table 5.1 Number of iterations (number of function evaluations) for the seven algorithms

K N | [BFGS] | [OCBFGS] | [INIBFGS] [DAV] [MDAV] | [LCHANG] | [SCAUP]
I 2 | 34 (43) | 43 (63) | 35 (56) | 41 (51) | 41  (56) | 43  (63) | 43 63
2 2 | 9 (10)| 16 (17) | 19 (20) | 9 (10) | 18 (19) | 16 (17) | 16 17
3 2 | 143 (186) | 187 (270) | 145 (195) | 168 (201) | 167 (205) | 187 (270) | 187 (270
4 2 | 11 @37 | 15 (18) | 12 (16) | 12 (15) | 13 (17) | 15 (18) | 15 18
5 2 | 14 (18) | 17 (19) | 18 (19) | 12 (16) | 15 (16) | 17  (19) | 17 19
6 2 | F3 (F3)| 18 (19) | 20 (21) | F3 (F3) | 19 (21) | 18 (19) | 18 19
7 3 | 27 (36) | 32 (45) | 26 (29) | 27 (36) | 30 (34) | 30 (33) | 32 37
8 31 19 (21) | 22 (23)] 28 (29) | 18 (20) | 25 (26) | 22 (23) | 19 22
9 3 2 @Y 3 5| 3 B| 2 (3)] 2 3)| 3 (5) | 3 (5
10 3| 2 (14) | F2 (F2)| F2 (F2)| 2 (14) | 432 (544) | F2 (F2) | F2 (F2
11 3| 14 (23) | 22 (35) | 17 (22) | 9 (20) | 14 (18) | 23 (29) | 8 22
12 3| 23 (27) | 38 (43) | 36 (42) | 22 (26) | 38 (43) | 38 (43) | 33 39
13 4 | 35 (44) | 32 (33)| 51 (52) | 20 (39) | 42 (43) | 40 (41) | 41 47
14 4 | 76 (118) | 154 (177) | 36 (52) | 78 (122) | 55  (85) | 108 (132) | 103 (121
15 4 | 21 (26) | 35 (36) | 32 (35) | 23 (27) | 23 (27) | 33 (35) | 26 33
16 4 | 25 (51) | 24 (25) | 35 (36) | 20 (46) | 27 (28) | 24 (25) | 19 20
17 5 | F3 (F3) | 140 (151) | 97 (104) | F3 (F3) | 93 (101) | 94 (102) | 86 5101
18 6 | 33 (39) | 51 (54) | 44 (46) | 32 (34) | 41 (45) | 39 (43) | 101 (124
19 11| 49 (71) | 110 (116) | 74 (79) | 52 (68) | 64 (67) | 68 (71) | 72 (91
20 12 | 43 (54) | 103 (112) | 86 (94) | 41 (52) | 84  (86) | 81  (90) | 132 (168
21 12 | 121 (170) | 42 (62) | 35 (56) | 133 (150) | 41  (56) | 44  (64) | 87 (112
22 12| 60 (81) | 36 (38) | 51 (52) | 69 (81) | 42  (43) | 42  (44) | 66 79
23 12 | 174 (242) | 59 (84) | 51  (63) | 105 (127) | 66  (80) | 59  (84) | 60 85
24 12 | 249 (363) | 92 (111) | 136 (I71) | 177 (238) | 141 (171) | 24 (26) | 96 (114
25 12 | 23 (25) | 21 (22) | 21 (22) | 22 (24) | 21 (22) | 21 (22) | 21 22
26 12| 29 (37) | 52 (54) | 27 (33) | 26 (32) | 26 (32) | 41  (43) | 29 32
27 12 | 11 (12) | 11 (15) | 12 (16) | 11  (12) | 10  (14) | 11  (15) | 12 17
28 12 | 17 (29) | 31 (33) | 34 (36) | 20 (26) | 27 (29) | 27 (29) | 41 52
29 12 8 (| 6 (| 7 @ 1 (9] 7 9) | 6 () | 6 (7
30 12 | 22 (48) | 18 (19) | 22 (23) | 21 (38) | 18 (19) | 18  (19) | 18 22
31 12 | 50 (113) | 15 El6 39 540 31 (52) | 32 533 15 Elﬁ 15 El6
TOTALS 1342(1938) | 1287(1552) | 1132(1347) | 1217(1575) | 1130(1326) | 1095(1326) | 1318 (1674)
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