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A Coloring Algorithm for Disambiguating Graph
and Map Drawings

Yifan Hu, Lei Shi and Qingsong Liu

Abstract—Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is
often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In
this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm
computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space
decomposition of the color gamut. We give examples demonstrating this approach in real world graphs and maps, as well as a user
study to establish its effectiveness and limitations.

Index Terms—graph drawing, virtual maps, edge coloring, branch-and-bound algorithm, global optimization
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1 INTRODUCTION

G RAPHS are widely used to depict relational information
among objects. Typically, graphs are visualized as node-

link diagrams [1]. In such a representation, edges are shown
as straight lines, polylines or splines. Graphs that appear in
real world applications are usually non-planar. For such graphs,
edge crossings in the layout are unavoidable. It is a commonly
accepted principle that the number of edge crossings should be
minimized whenever possible. This principle was confirmed by
user evaluations which showed that human performance in path-
following is negatively correlated to the number of edge crossings
[27], [30]. Later studies found that the effect of edge crossings
varies with the crossing angle. In particular, the task response time
decreases as the crossing angle increases, and the rate of decrease
levels off when the angle is close to 90 degree [20], [21]. This
implies that it is important not only to minimize the number of
edge crossings, but also to maximize the angle of the crossings.
Consequently, generating drawings that give large crossing angles,
or even right crossing angles, became an active area of research
(e.g., [7]). Nevertheless, for general non-planar graphs, there is
no known algorithm that can guarantee large crossing angles for
straight line drawings [7]. Therefore, techniques to mitigate the
adverse visual effect of small angle crossings are important in
practice.

In this paper we propose to use colors to help differentiate
edges. Our starting point is an existing layout, and we assume
that the graph is to be displayed as a static image on paper, or
on screen. The motivation comes from users of the Graphviz [14]
software. These users were generally happy with the layouts of
their graphs, but asked whether there was any visual instrument
that could help them follow edges better. Examining their layouts,
we realized that because edges were drawn using the same color
(e.g., black), it was difficult to visually follow these edges when
there were a lot of edge crossings. The feedback from our users,
and our own observation, echo the findings by Huang et al. [20],
[21]. When explaining why small crossing angles are detrimental
to the task of following a path, they found, with the help of
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an eye tracking device, that “when edges cross at small angles,
crossings cause confusion, slowing down and triggering extra
eye movements.” and that “in many cases, it is crossings that
cause confusion, making all the paths between two nodes, and
branches along these paths, unforeseeable. Due to the geometric-
path tendency, human eyes can easily slip into the edges that are
close to the geometric path but not part of the target path.”

Edge crossing is not the only hindrance to the visual clarity of
a graph drawing. We denote by the term label the drawing of a
node, including the text label. An additional problem is that when
an edge from node u passes underneath the label of a node v and
connects to a node w, it is impossible to visually tell whether
there is one edge u↔ w, or two edges u↔ v and v↔ w, when
all edges are of the same color (e.g., Fig. 3(b)). These problems
can be solved with user interactions by clicking on an edge of
interest, or on a node to bring its neighbors closer (see, e.g.,
[23]). However, doing so involves an extra step for the user that
may not be necessary if edges can be differentiated with a proper
visual cue. Furthermore, there are situations where interaction is
not possible, e.g., when looking at a static image of a graph on
screen, or in print. These are the situations that are of particular
interest in this paper.

We believe all the problems of visually distinguishing and
following edges mentioned above can be greatly alleviated by
choosing appropriate colors or line styles to differentiate edges.
We first identify edge pairs that need to be differentiated (the
colliding edges), and represent them as nodes of a dual collision
graph. We then propose an algorithm to assign colors to the nodes
of this collision graph that maximizes the color difference between
nodes that share an edge. Our main contributions are:

• An approach for establishing a dual graph among colliding
edges/regions, and coloring the nodes of the dual graph to
disambugate graph/map drawings.

• A novel branch-and-bound graph coloring algorithm that
finds the globally optimal color embedding of each
node with regard to its neighbors. The algorithm works
with both continuous color spaces and user-defined color
palettes, and can be applied to graphs with straight or
curved edges, and to maps.
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• A user study that establishes the effectiveness of the
coloring approach, as well as its limitations.

2 RELATED WORK

2.1 Color assignment

Graph coloring is a classic problem in algorithmic graph theory.
Traditionally the problem is studied in a combinatorial sense, for
example, finding the smallest number of k colors on the vertices
of a graph so that no two vertices sharing an edge have the
same color. The difference between this and our work is that
in the k-colorability problem, a solution is valid as long as any
pairs of vertices that share an edge have different colors; no
consideration is given to maximizing the actual color differences.
In essence, the distance between colors is binary – either 0 or 1.
For our problem, we assume that even among distinctive colors,
the differences are not equal. They are measured by distances in
the color space. In the special case when only k colors are allowed,
our algorithm degenerates to find the optimal color assignment
among all solutions of the k-colorability problem.

This last problem of optimal color assignment was also studied
by Gansner et al. [12] and Hu et al. [18], in the context of
coloring virtual maps to maximize the color differences between
neighboring regions. In these works, a set of exactly k distinctive
colors are assumed to be given, with k being the number of
countries in the map. The map was then colored by an optimal
permutation of the k colors. On the other hand, in this paper we
assume that the color space can be either continuous or discrete,
and we select among all colors in the color space to maximize
color differences. When applied to map coloring, our algorithm
produces k distinctive colors as a side product.

Dillencourt et al. [8] studied the problem of coloring geometric
graphs so that colors on nodes are as different as possible. The
problem they studied is very related to ours, except that in
their case the application is the coloring of geometric regions,
whereas we are also interested in coloring edges of a graph.
Dillencourt et al. used a force-directed gradient descent algorithm
to find a locally optimal coloring of each node with respect to its
neighbors. We propose a new algorithm based on a branch-and-
bound process over an octree decomposition of the color space
that finds a globally optimal coloring for each node with respect
to its neighbors. Furthermore, our approach is more flexible and
works for discrete color palettes, in addition to continuous color
spaces.

2.2 Crossing angles

Given the finding by Huang et al. [20], [21] that edge crossings at
close to 90 degree hamper human performance less than those at
smaller angles, there are active researches in the so called Right-
Angle Crossing (RAC) drawings of graphs. In such a drawing,
edges cross at right angles (e.g., [7]). This is a practice employed
in hand- and algorithm-drawn metro maps as well (e.g., [31]).
However, it was shown [7] that a straight-line RAC drawing can
have at most 4n−10 edges, with n the number of vertices. As far
as we are aware, even that is only a necessary, but not sufficient,
condition. Therefore, techniques to help alleviate the effect of
small angle crossings when RAC or larger angle drawings are
not feasible are important in practice.

The angular resolution of a drawing is the sharpest angle
formed by any two edges that meet at a common vertex. In

addition to maximizing crossing angles (e.g., [7]), there have been
research efforts in maximizing the angular resolution in order
to improve visual clarity. Most recently, Lombardi Drawings of
graphs was proposed [3], [9], in which edges are drawn as arcs
with perfect angular resolution. However, Purchase et al. [29]
found that even though users prefer the Lombardi style drawings,
straight-line drawings created by a spring-embedder gives better
performance for path following and neighbor finding tasks. For
straight-line drawings, while it is possible to adjust the layout
to improve the angular resolution (e.g., [6], [15]), the extent to
which this can be done is limited. Although a previous study by
Purchase et al. [28] did not find sufficient support for maximizing
angular resolution, we find that when two edges connected to the
same node are almost on top to each other, it is difficult to tell
whether these are two edges or one. For this reason we consider
such edges to be in collision as well.

2.3 Edge bundling and edge coloring

Edge bundling is another useful tool for decluttering drawings
of complex graphs [4], [11], [13], [16], [17]. However when
edges are bundled, it is no longer possible to follow an individual
edge to its exact destination. Pupyrev et al. [26] proposed to
separate edges belonging to the same bundle by a small gap.
While this makes it possible in theory to follow individual edges,
in practice the edges in each bundle are drawn very close to
each other. We believe whether fully bundled, or separated by a
small amount, bundled or routed edges can benefit from using
colors to differentiate among them (see Fig. 8). Peltonen and
Lin [25] devised an alternative approach to coloring edges in the
context of edge bundling: they made the color distance among
bundled edges proportional to the sum of Euclidean distances of
the end points. They solved a multidimensional scaling (MDS)
problem to embed each bundled edge in a lower dimensional
color space. The MDS process minimizes the sum of the square
of differences between a pair of edges in the color space, and their
distance in the layout space. The minimization under-weights edge
pairs that have similar starting and ending points. The resulting
embedding colors edge bundles starting from and ending in the
same regions with similar colors. This is contrary to our use case
where such edges will be assigned distinctive colors, and makes it
difficult to follow a particular edge. The paper highlighted other
differences from our original conference paper [19]. In addition,
the optimization problem solved in [25] is unconstrained and
without consideration of the shape of the color space. An affine
transformation is applied afterwards to find the final embedding
in the color space. On the other hand, we optimize directly in
the color space, thus potentially have more freedom in choosing
the right colors. Furthermore, unlike our algorithm, the algorithm
proposed in [25] does not work with discrete palettes.

As far as we know, Jianu et al. [22] were the first to propose
the idea of using colors to differentiate edges. However, we believe
our work is substantially different and better. Jianu et al. consid-
ered all pairs of edges, and set the edge weights among all edges to
be the inverse of either the intersection angle or the edge distance
if the edges do not intersect. This is sub-optimal in the resulting
coloring since it is perfectly harmless to color edges that have no
conflict with the same color. In our work, we propose a sparse dual
collision graph, constructed based on four collision conditions.
Using our terminology, the approach of Jianu et al. always results
in a complete collision graph, making it inefficient other than for
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very small graphs. Furthermore, because they consider all edge
pairs, every edge of the original graph ends up with a unique color.
Therefore the drawings in [22], which are all of very small graphs,
always contain a multitude of colors, which is unnecessary. Our
collision graph almost always contains disconnected components
(e.g., Fig. 4). This decomposes the coloring problem into smaller
ones, and allows us to use the same (black) colors for many edges.
Jianu et al. [22] solved the coloring problem using a force-directed
algorithm, similar to Dillencourt et al. [8]. We were kindly given
the source code for [22] from one of the authors. Based on reading
the code, we found that it applies force directed algorithm to
nodes of the collision graph in the 2D subspace of the LAB color
space (the AB subspace). It then sets a fixed L value of 75 (L
is the lightness, between 0 to 100). This observation is consistent
with the drawings in [22], where black background is used for all
drawings due to the high lightness value (see also Fig. 6(d)). This
makes the algorithm limited to a small subset of all possible colors.
Furthermore, the force-directed algorithms of Dillencourt et al. [8]
and Jianu et al. [22] can only be applied to continuous color space
in 2D or 3D. Neither works for user specified color palettes, or
1D colors. Our algorithm works for both continuous or discrete
color spaces. Overall, we believe that the idea of using colors
for disambiguating edges are quite natural to think of. What
differentiates our work from [22] is the design of an appropriate
algorithm that makes the idea work efficiently and effectively in
practice, and for continuous and discrete color spaces. Finally,
we present the first user study which evaluates the results of
our algorithm. The results suggested possible scenarios when
edge coloring is effective, and demonstrated that our proposed
algorithm is more effective than that of Jianu et al.

This paper was originally published as a conference pa-
per [19]; the journal version adds substantial new materials in-
cluding a new user study, and expands the algorithm and results
sections.
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Fig. 1. Left: a graph with 20 nodes and 100 edges. It is difficult to follow
some of the edges. For example, is node 19 (blue) connected to node 16
(blue)? Is node 19 connected to 17 (blue)? Right: the same graph, with
the edges colored using our algorithm. Now it is easier to see that 19
and 16 are connected by a blue edge, but 19 and 17 are not connected.

3 THE EDGE COLORING PROBLEM AND A COLOR-
ING ALGORITHM

Appropriate coloring can be of great help in differentiating edges
that cross at a small angle. Fig. 1 (left) illustrates such a situation.

It is difficult to follow the edge from the blue node 19 to the blue
node 16. In comparison, in Fig. 1 (right), it is easier to see that
they are connected via a blue edge. The objective of this section
is to identify situations where ambiguities in following edges can
occur, and propose an edge coloring algorithm to resolve such
ambiguities.

3.1 Edge collisions
Two edges are considered in collision if an ambiguity arises when
they are drawn using the same color. The following are four
conditions for edge collision:

• C1: they cross at a small angle.
• C2: they are connected to the same node at a small angle.
• C3 (optional): they are connected to the same node at an

angle close to 180 degree.
• C4: they do not cross or share a node, but are very close

to each other and are almost parallel.

We now explain the rationale for considering each of these
four conditions as being in collision. C1 is considered a collision
following the user studies described in Section 1 by Huang et
al. [20], [21]. When eyes try to follow an edge to its destination,
small crossing angles between this edge and other edges create
multiple paths along the direction of the eye movement, either
taking eyes to the wrong path, or slowing down the eye movement.
C2 creates a situation where one edge is almost on top of the other,
making it difficult to visually follow one of these edges.

C3 could create confusion as to whether the two edges
connected at close to 180 degree behind a node label are one
edge, or two edges. For example in Fig. 1 (left), it is difficult
to tell whether nodes 19 and 17 are connected, or whether 19
is connected to 20 and 20 is connected to 17. When edges are
properly colored (Fig. 1 (right)), it is clear that the latter is true.
Note that if edges are allowed to be drawn on top of nodes, then an
edge between 19 and 17 would be seen over the label of 20, thus
this kind of confusion can be eliminated. Therefore we consider
C3 as optional. However drawing edges over the label of nodes
introduces extra clutter and make the node labels harder to read.

C4 causes a problem because when two edges are very close
and almost parallel, it is difficult to differentiate between them.
In addition, it can cause confusion when node labels are drawn.
Fig. 3(a) shows two lines very close and almost parallel. While
it is possible to differentiate between the two edges, when node
labels are added (Fig. 3(b)), it is difficult to tell whether there are
two edges (1↔ 2 and 3↔ 4), or three edges (1↔ 2, 1↔ 4 and
1↔ 3), or whether there even exists an edge 3↔ 2. This confusion
can be avoided if suitable edge coloring is applied (Fig. 3(c)).

To resolve these collisions, we propose to color the edges so
that any two edges in collision have colors that differ as much as
possible. We first construct a dual edge collision graph.

3.2 Constructing the dual collision graph
Let the original graph be G = {V,E}. Denote by N(v) the set of
neighbors of a node v. The dual collision graph is Gc = {Vc,Ec},
where each node in Vc corresponds to an edge in the original
graph. In other words, there is a one-to-one mapping e : Vc→ E.
Two nodes of the collision graph i and j are connected if e(i) and
e( j) collide in the original graph.

The problem of coloring the edges of G then becomes that of
coloring nodes of the collision graph Gc. Let C be the color space,
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Fig. 2. The proposed pipeline for coloring the edges of the Zachary’s Karate Club Graph: (a) the original graph; (b) the dual collision graph, with
each node representing an edge of the original graph, and positioned at the center of that edge; (c) the dual collision graph, with nodes colored to
maximize color differences along the edges (see Fig. 4 for a clearer force-directed layout of this graph); (d) the original graph, with edges colored
using the node coloring in (c).
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Fig. 3. An illustration of the rationale for collision condition C4. (a) Two
edges that do not cross. (b) When nodes are shown, it is difficult to tell if
there are two edges (1↔ 2 and 3↔ 4), or three edges (1↔ 2, 1↔ 4 and
1↔ 3), or whether there even exists an edge 3↔ 2. (c) After coloring
each edges with a distinctive color, it is clear that there are two edges,
1↔ 2 and 3↔ 4

and c(i)∈C be the color of a node i∈Vc. We seek to maximize the
minimum color difference between all pairs of neighboring nodes
in the collision graph:

argmax
c:Vc→C

min
{i, j}∈Ec

wi j‖c(i)− c( j)‖, (1)

where wi j ≥ 1 is a weight inversely proportional to how important
it is to differentiate colors of nodes i and j, and ‖c(i)− c( j)‖ is
a measure of the difference between the colors assigned to the
two nodes. Note that we do not seek to maximize the average
color difference, because that could lead to a situation where the
average is optimized at the expense of some neighboring nodes
being colored with similar colors. However, if the layout is in
such a way that most of the edges collide with each other, then
minimizing the average color differences may be more appropriate
since at least on average, the color difference would be large. In
practice, we have not found this to be necessary. Typically, the
collision graphs are sparse and disconnected, e.g., Fig. 4.

Note that (1) is stated rather generally: C could be a discrete,
or continuous, color space. This is intentional since we are
interested in both scenarios. All we assume is that C sits in a
Euclidean space of dimension d.

Once we colored the collision graph, we can use the same
coloring scheme for the edges of the original graph. The complete
pipeline of our proposed approach is illustrated in Fig. 2. Notice
that the collision graph in Fig. 2(b) (displayed more clearly using

Fig. 4. The collision graph in Fig. 2(c), with a force-directed layout. A
node labeled “i j” represents edge i↔ j in the original graph. Nodes
are colored using Algorithm 1, so that each node is colored as differently
from its neighbors as possible. To disambiguate edges we color them in
gray scale.

a force-directed layout in Fig. 4) is disconnected. We apply our
algorithm on each component of the collision graph.

3.3 A color optimization algorithm
Dillencourt et al. [8] proposed a force-directed algorithm in a
Euclidean color space. They wanted all pairs of nodes to have
distinctively different colors. Consequently, their algorithm used a
force model where repulsive forces exist among all pairs of nodes.

Since in our case edges can have the same color as long as
they do not collide, there is no need to push all pairs of nodes
of the collision graph apart in the color space. Therefore we can
not use the algorithm of Dillencourt et al. [8] as is. Although it is
possible to adapt their algorithm, we opt to propose an alternative
algorithm for two reasons. One is that we would like to be able
to use not only continuous color spaces, but also discrete color
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palettes (Sec. 4.1). The other is due to the fact that even when
deciding the optimal color for one node of the collision graph with
regard to all its neighbors, this seemingly simple problem can have
many local maxima. These two reasons mean that a force-directed
algorithm, which operates in a continuous space and is known to
be prone to get stuck in local minimum, is not ideal.

Fig. 5. Left: contour plot of the distance to a set of six (white) points in the
space [0,0.9]× [0,0.9]. There are seven or more local maxima. E.g., near
{0,0.55}, {0.35,0.9} and {0.4,0.7}. Right: an illustration of the quadtree
structure generated during our algorithm for finding the global optimal
embedding of a node that is farthest away from the set of six points. The
final solution is {0,0} (shown as the red point).

Here, we give an example to illustrate the second reason. For
simplicity of illustration, within this example, we assume that our
color space is 2D, and that the color distance is the Euclidean
distance. Suppose we want to find the best color embedding for
a node u in the collision graph with six neighbors, and the six
neighbors are currently embedded as shown in Fig. 5 (left). We
want to place u as far away from the set of six points as possible.
Fig. 5 (left) shows a color contour of the distance from the set
of six points. Color scale is given in the figure, with blue for low
values and off-white for large. From the contour plot it is clear
that there are seven or more local maxima. In 3D there could be
even more local maxima. A force-directed algorithm such as [8],
even with the random jumps and swaps, is likely to settle in one
of the local maxima.

Instead we hope to find the global maximum. A naive way to
find the global maximum position in the color space with regard
to a set of points is to search exhaustively by imposing a fine grid
over the color space, and calculating the distance from each mesh
point to the set. However, given that the color space are typically
of three dimensions, even at a resolution of 100 subdivisions
along each dimension, we need 106 distance calculations. This is
computationally too expensive, bear in mind that this computation
needs to be performed for each and every node of the collision
graph repeatedly until convergence.

We propose a more efficient algorithm based on the octree data
structure (quadtree for 2D) that does not require evaluations of the
distance over all mesh points. Using Fig. 5 (left) as an example,
we want to find a point in the color space that is of maximal
distance to a target set of points. We define the objective function
value of a square to be the distance from the center of the square
to the target set. We start with a queue of one square covering the
color space, and define the current optimal value as the maximal
distance over all squares in the queue to the target set. Taking a
square from the current queue, we subdivide it into four squares.
If the distance of one of the four squares to the point set, plus the
distance from the center of the square to a corner of the square,
is less than the current optimal distance, this square is discarded.

This is because no point in this square can have a larger distance
to the target set than the current optimal distance. If the square
is outside of the color space, it is also discarded. Otherwise the
square is entered into the queue, and the optimal value updated.
This continues until the half width of all squares in the queue
is smaller than a preset threshold ε . The point that achieves the
current optimal value is taken as the optimum. We know that the
current optimal value should be within a value d1/2ε to the global
optimal value, where d1/2ε is the half diagonal of the final square
in d-dimensional space.

This algorithm is in essence a branch-and-bound algorithm
operating on the octree (quadtree for 2D) decomposition of the
color space. When applied to the problem in Fig. 5 (right), we
can see that in the top-left quadrant, the quadtree branched twice
and stopped, because the function values are relatively small in
that quadrant. The top-right and bottom-right quadrants branched
3 and 4 times, respectively. The final optimal point is found
in the bottom-left quadrant. Initially the algorithm homed in on
two regions, one around {0.375,0} and the other around {0,0},
eventually settled around the latter.

Of course this branch-and-bound algorithm only finds the
global optimal embedding for one node. After applying the al-
gorithm to every node of the collision graph once (one outer
iteration), we repeat if the minimal color difference increases, or
if it does not change, but the total sum of color difference across
all nodes increases.

We have named the algorithm CLARIFY (Edge Coloring for
CLARIFYing a Graph Layout) and formally state it in Algorithm 1.
The following are the notations used in the presentation of the
algorithm: for a point x and a finite point set C in the Euclidean
color space C , we define the point-set distance as dist(x,C) =
miny∈C wi(x),i(y)‖x−y‖2, where i(x) is edge index that corresponds
to the point x. We denote the center of a square or cube s as
center(s), its children (by dividing a square into 4 or a cube into
8) as children(s), and its half width as δ (s). We define the distance
between s and a set of point C as that between the center of s and
C, that is,

dist(s,C) = dist(center(s),C).

The CLARIFY algorithm utilizes the global optimization al-
gorithm for embedding one node, given in Algorithm 2 as
EmbedOneNode.

Algorithm 1 CLARIFY(G,C ,ε)

1 input: graph G = {V,E}, color space C , threshold ε

2 compute a dual collision graph Gc = {Ec,Vc} of G
3 randomly choose c(i) in C for all i ∈Vc
4 set: mindist = 0, sumdist = 0
5 repeat
6 set: mindistold = mindist, sumdistold = sumdist

mindist = ∞, sumdist = 0
7 for i ∈Vc
8 define c(N(i)) := {c( j)| j ∈ N(i)}
9 define wmax = max j∈N(i) wi j

10 c(i) = EmbedOneNode(c(N(i)),wmax,ε)
11 mindist = min{mindist, dist(c(i),c(N(i)))}
12 sumdist += dist(c(i),c(N(i)))
13 until (mindist < mindistold ||

(mindist = mindistold && sumdist≤ sumdistold))
14 return: c(e(i)) = c(i), i ∈Vc
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Algorithm 2 EmbedOneNode(C,wmax,ε)

1 input: a set of points C ∈ C , max weight wmax, a threshold ε

2 set: s a square/cube covering the color space C
3 set: a first-in-first-out queue Q = {s}
4 set: c∗ = center(s) and dist∗ = dist(s,C)
5 for s ∈ Q
6 if δ (s)< ε break
7 Q := Q−{s}
8 for t ∈ children(s)
9 if t ∩C = /0 | dist(t,C)+wmaxd1/2δ (t)< dist∗

10 continue
11 if dist(t,C)> dist∗

12 c∗ = center(t), dist∗ = dist(t,C)
13 Q := Q∪{t}
14 return: c∗

4 IMPLEMENTATION AND RESULTS

We now give details on the implementation of CLARIFY, and
results of using the algorithm on real world graphs.

4.1 Color space
CLARIFY works for both continuous color spaces (as long as it is
a metric space), as well as discrete ones.

The RGB color space. An often used color model is RGB.
This model defines color by a combination of three color intensi-
ties, red, green, and blue. Thus colors in the RGB model can be
considered as residing in a three-dimensional cube.

RGB color model is widely used for the representing and dis-
playing images in electronic systems, such as LCD/LED display.
However, distance between two colors in the RGB space is not an
accurate measure of perceived difference by human eyes. For that
purpose, the LAB color model is consider better [10].

The LAB color space. The LAB color space (a rectangular
box [0,100]× [−128,128]× [−128,128]) includes all perceivable
colors, and more. We only care about the LAB color gamut – the
part of the LAB space that corresponds to the RGB space. It has
a complex shape. Applying CLARIFY requires checking whether
a cube is outside of the LAB gamut, which is considerably more
complicated than checking whether a point is outside of the gamut.

Instead, since CLARIFY works just as well on a discrete set of
colors, we modify CLARIFY slightly as follows. We first sample
the LAB gamut: we subdivide L, A and B at one unit increment,
and check whether the resulting points are inside the LAB gamut
by converting the point to RGB space, and back to the LAB space.
If the double-conversion ends at the same point (within a threshold
of 0.02 in Euclidean distance), the point is considered inside the
LAB gamut. This resulted in 826816 points (12.4% of the LAB
space). Note that we only have to find this sample set once and
store as a file. We then construct an octree over this point set.
The CLARIFY algorithm works with this octree, without worrying
about staying inside the LAB gamut. This sampling technique also
makes it very easy to control the lightness of the color – if we need
to display the drawing in a dark background and thus light colors
are desired, we can simply filter out points with a low L value in
the sample. Fig. 6(b) shows the result of apply CLARIFY in the
LAB space with 0≤ L≤ 70.

In terms of CPU time, we found that working in LAB space
with the sampling technique gives very similar CPU time to

working in the RGB space. Speed can be further improved if we
take a coarser sample.

User-define color palettes. Any user defined color palette can
be handled in a similar way to the LAB gamut – we convert the
color palette consists of k colors to the LAB space, then interpolate
these k colors to get K sample points. We do so by subdividing the
path linking these k points in the LAB space into K−1 segments
of equal distance. The path can be constructed along a natural
ordering of the palette, or along a shortest path/tour by solving a
Traveling Salesman Problem in 3D. An octree is then constructed
using the K sample points and CLARIFY is applied over the
octree. Fig. 6 gives some examples of using two a ColorBrewer [2]
color palette, with K = 104.

4.2 Complexity of the CLARIFY algorithm

The CLARIFY algorithm consists of two main steps: finding the
dual collision graph, and computing a color assignment.

The collision graph is calculated by checking whether edge
pairs are in collision. Conditions C2 and C3 can be checked by
looping through each node of the original graph, and testing if
a pair of edges starting from the node nearly overlap, or run in
almost opposite directions. This check can be done after sorting
the angles, hence on a node with l neighbors, assuming that the
edges are not entirely on top of each other, the cost should be
around l log(l), so the cost of checking over all nodes is |E| log |E|
(the pathological case of all edges on top of each other would give
a complete collision graph thus a complexity of |E|2).

Condition C1 can be checked using the Bentley-Ottmann
algorithm [24] with a complexity of O((|E|+ k) log |E|), where
k is the number of edge crossings. If k is |E|2 or more, a naive
algorithm which checks all |E|2/2 edges should be used. We are
not aware of a good algorithm for checking C4, one possibility
is to replace each edge with a rectangle in the shape of a thicker
edge, then apply the Bentley-Ottmann algorithm, which should
give us the same complexity as checking C1.

The second step of CLARIFY, that of assigning colors, ap-
plies the EmbedOneNode algorithm repeatedly over all nodes.
EmbedOneNode is a branch-and-bound algorithm over an octree
data structure. Its complexity is dependent on the number of
local maxima, and how close they are to the global maximum (in
terms of the objective function value). If the local maxima have
much smaller function values compared with the global maximum,
as in the case of Fig. 5, then branches of the octree/quadtree
corresponding to the local maxima will terminate at an early stage,
and the complexity of the algorithm is around | log(ε)|, otherwise
the complexity is around L ∗ | log(ε)| where L is the average
number of local maxima and ε the half width of the smallest
cube in the octree structure. Overall the worst case complexity
is O(|E|| log(ε)|L) per iteration over all nodes. L is a value hard
to quantify, we believe it is related to the average degree of the
collision graph.

Taking both the collision graph formation and the optimization
into account, the CLARIFY algorithm has an average case com-
plexity of O((|E|+ k) log |E|+ t|E|| log(ε)|L), with k the number
of edge crossing, L the average number of local maxima, and t the
number of iterations of Algorithm 1. The worst case complexity
is O(|E|2 + t|E|| log(ε)|L), in the pathological situation where all
edges are on top of each other.

In practice we found that the optimization step dominates
the computation time even when we use the naive algorithm for
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Fig. 6. Applying CLARIFY on the Karate graph in RGB and LAB color spaces (a-b), and with a ColorBrewer palettes (c). For comparison we include
the result of applying the algorithm of Jianu et al. [22], vs CLARIFY in LAB color space with fixed lightness of 75 (d-e). Finally we modified the Jianu
et al. [22] code to use a white background and dropped pairs of edges with closeness metric less than 0.1 (f).

computing the collision graph (see Table 2). Therefore for the rest
of the paper we use the naive algorithm for the first step of forming
the collision graph, which makes computation of C4 much simpler.

4.3 Choice of parameters

For all our experiments on graphs, we take wi j = 1 in equation 1.
For maps, we use non-unit weights as described in Section 4.4.
To check collision conditions, we need to define what is a
“small angle” and what is “close to 180 degree.” Based on visual
observations by the authors, for the rest of this paper we set these
to be 15 degree and 165 degree. We define two lines being “very
close” if the smallest distance between two points on the lines is
less than 1% of the larger of the length of the lines. We consider
two lines as “almost parallel” if they form an angle that is less than
one degree. The parameter ε controls the accuracy with which we
find the global optimal embedding for one node. Table 1 shows
the effect of this parameter on the color difference achieved, as
well as on CPU time. Clearly the CPU time increases almost
linearly with | log(ε)|, as predicted by the complexity analysis. The
color difference is also in-line with expectation: from ε to ε/10, it
changes roughly proportionally to d1/2ε or less, where d = 3 is the
dimension of the color space. This fits our analysis in Section 3.3.
Our own visual observation convinced us that ε = 10−2 gives very
similar coloring to ε = 10−3, hence we set ε = 10−2 by default.

TABLE 1
Effect of ε on the color difference and CPU time when applying
CLARIFY (ten random starts) in RGB color space (max possible

cdiff= 1.732) to the graph in Fig. 1. The CPU time is that for CLARIFY,
minus the time for constructing the collision graph (0.04 seconds). The

latter is independent of ε

ε cdiff CPU
10−1 0.866 0.02
10−2 0.974 0.05
10−3 0.988 0.09
10−4 0.990 0.23
10−5 0.990 0.43

TABLE 2
Statistics on the original and dual collision graphs, CPU time (in

second) and objective function (cdiff) for CLARIFY (one random start).
The time in bracket is for constructing the dual collision graph.

graph |V | |E| |Ec| CPU cdiff
ngk 4 50 100 54 0.6 (0.) 122.69

NotreDame yeast 1458 1948 1685 1.3 (0.2) 67.9
GD00 c 638 1020 1847 1.7 (0.1) 64.32
Erdos971 429 1312 4427 2.1 (0.1) 59.3

Harvard500 500 2043 11972 2.3 (0.3) 35.0
extr1 5670 11405 34696 14.5 (7.9) 47.1

4.4 Examples

We now apply CLARIFY to graphs from real applications (ad-
ditional examples are at http://yifanhu.net/EdgeColoring). Table 2
gives results on six of the graphs we tested, including running
time and objective function (1) (color diff) achieved in LAB color
space. These come either from the University of Florida Sparse
Matrix Collection [5], or from the test graphs distributed with
Graphviz [14], and originate from different application areas. We
intentionally avoided choosing mesh-like graphs – such graphs
are easy to layout aesthetically. Their layouts also tend to exhibit
a low perceptual complexity, making it relatively easy to follow
edges and paths. Compared with a non-mesh-like graph, a mesh-
like graph is easier for our algorithm because there are typically
fewer colliding edges. We ran the experiment on a Macbook Pro
laptop with a 2.3 GHz Intel Core i7 processor.

It can be seen from Table 2 that for graphs of up to a
few thousand nodes and edges, CLARIFY runs quickly. The
majority of the CPU time is spent on color assignment, while
the construction of the collision graph takes relatively little time
even with the naive collision graph construction algorithm. The
Harvard500 graph gives a large |Ec| (number of edges in the
collision graph) in comparison to the number of edges, because
it has a few almost complete subgraphs, which results in a lot of
crossings at small angles.

Fig. 7 shows the ngk 4 graph before and after the coloring. It
is difficult to tell, from Fig. 7(a), whether nodes 45 and 15 (blue)
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Fig. 7. Edge coloring on ngk 4 graph: (a) the original graph. Are nodes 45 and 15 (blue) connected? (b) the colored drawing. We can tell that 45
and 15 are indeed connected by a red edge.
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Fig. 8. (a) A graph with spline edges. Some of the splines are hard to differentiate. (b) In the zoomed-in view, is node 16 connected to node 60, or
to node 19 (both below node 16)? (c) Splines are colored using the CLARIFY algorithm. Now colliding edges are easier to differentiate. (d) In the
zoomed-in colored view, node 16 is seen to be connected to node 60 by a red spline, but not to 19. The latter is connected by a blue spline to node
15 above.
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Fig. 9. Top: applying CLARIFY on a collaboration map with two Color-
Brewer palettes: Accent 8 (left) and Dark2 8 (right). Bottom: randomly
selecting colors from the palettes.

are connected. From Fig. 7(b) we can tell that they are indeed
connected by a red edge.

So far we have been applying CLARIFY to straight-line
drawings of graphs. The algorithm can also be used for drawings

where edges are splines. This could be the result of an edge
bundling, or an edge routing. Fig. 8 shows the result of applying
our algorithm to a graph from a user of our software, this is one
of the examples that motivates our work. As we can see, from the
original drawing, it is difficult to differentiate some of the splines.
For example, is node 16 connected to node 60, or to node 19 (both
below node 16)? With colored splines, we can see that node 16 is
connected to node 60 by a red spline.

Finally, we applied CLARIFY to color virtual maps where
countries could be fragmented. Because of the fragmentation, we
have to use as many color as there are countries. Fig. 9 (top) shows
colored versions of an author collaboration map (see [12]) using
two color palettes. Here each node is an author who published
in the International Symposium of Graph Drawing between 1994
to 2004. Authors are connected by edges if they co-authored a
paper. This gives a collaboration graph. Nodes are then clustered
to form countries. Up to now, for coloring the edges of node-link
graphs, we assume that it is equally important to differentiate all
colliding edge pairs, thus set the wi j in (1) to 1. For coloring
virtual maps, it is more important to color adjacent countries
with more distinct colors, at the same time, we also want to
differentiate all countries. Thus we set wi j to be the inverse of
the length of the shortest path that connect countries i and j in
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the collision graph of the map. From Fig. 9 we can see that
CLARIFY works well in using the specified palettes, keeping
neighboring countries colored with very distinct colors. Unlike the
coloring algorithm in [12], we also maintain good color distinction
among non-neighboring countries. Additional examples are given
at http://yifanhu.net/EDGE COLORING, where readers can find
graphs and maps colored using curated color palettes. These
palettes add themes (e.g. pastel) to the drawings, and makes
them more aesthetically pleasing instead of looking random and
jumbled, yet the edges/countries are distinct enough where it
matters. We note that CLARIFY is the only method that can utilize
color palettes effectively. While one could also generate colored
maps by randomly select colors in a specific color palette, the end
results are often unsatisfactory. For example, some neighboring
countries are assigned very similar colors (Fig. 9 (bottom)).

4.5 Comparison with Jianu et al. [22]
We evaluated our algorithm against that of [22] (hereafter called
JRFL), using the code kindly supplied by the authors. Fig. 6(d)
gives the result of applying JRFL on the Zachary graph. Following
[22], we use a black background, because the code sets lightness to
75. It is seen that near nodes 34 and 28, it is difficult to differentiate
edges. E.g., it is not clear whether node 34 is connected to 27
or not, due to the colors of edges 34–27 and 34–23 being very
similar. For a like-for-like comparison, Fig. 6(e) shows the result
of CLARIFY with fixed lightness of 75. Despite of the restricted
lightness, it does not suffer from the ambiguity seen in Fig. 6(e).
Finally, to understand whether JRFL is handicapped by the black
background and by the fact that it considers all the edge pairs,
we modified the JRFL code to use a lightness of 50, and set
the weights for the pairs of edges with a closeness metric ≤ 0.1
to 0. It is seen that changing the background color and using a
threshold do not resolve the issues we observed in Fig. 6(d). We
also compared with JRFL on other graphs, and found CLARIFY
better both in terms of ability to disambiguate drawings (by visual
inspection), and in speed. On most graphs, CLARIFY is about 10
times faster. An additional advantage of CLARIFY is that it is the
only known algorithm that can utilize color palettes effectively.

5 USER STUDY

We conducted two sets of controlled user experiments to study
the performance of CLARIFY edge coloring algorithm on repre-
sentative graph analysis tasks, such as visually following edges,
finding neighbors and identifying paths. In the first experiment,
we compared three methods: the baseline method that draws each
edge in Black-only (B, Fig. 10(b)), the edge coloring method
applying our CLARIFY algorithm to determine the color of each
edge (C, Fig. 10(c)), and the rAndom coloring (A, Fig. 10(a))
that uses one randomly-picked color in the entire color space
for each edge. This comparison is to validate the effectiveness
of using colors to draw graphs, with respect to the ordinary black-
only drawing. The second experiment compared the CLARIFY
algorithm with the latest JRFL edge coloring algorithm [22], to
examine whether CLARIFY advances the state-of-the-art. Both
experiments apply the same study design, data sets, graph analysis
tasks, and study procedure.

5.1 User study design
To fully utilize each subject, we applied a within-subject design
that every subject entered the experiment with each of the edge

coloring methods in comparison. In such design, user’s perfor-
mance can be distorted by the learning effect if the same graph
layout is used for all the edge coloring methods. Therefore, we
used three different layouts of the same graph data (Fig. 10(a-
c)). The subjects were arranged by a full factorial design to study
the effect of all the combinations of edge coloring method and
layout factor. The detailed design in the first experiment is shown
in Fig. 11(a), where subjects were grouped into 6 classes, entering
different coloring-layout combinations. Within each group, we
arranged 6 subjects to test every possible experiment order, so
as to counter-balance the practice and fatigue effect (Fig. 11(b)).
In total, we recruited 36 subjects for the official test of the first
experiment. In the second experiment, we recruited another set
of 24 subjects as there are only four different coloring-layout-
order combinations, i.e., two coloring methods (CLARIFY and
JRFL) and two layouts (layout 1, 2). All subjects were graduate
students majoring in computer science, which accorded well with
the potential user base of graph drawing tools. Note that we do
not consider the between-subjects difference.

5.2 Data and tasks
All tests were done using the Zachary’s Karate Club social
graph. This is a well known benchmark graph with 34 nodes
and 78 edges. Three layouts were generated with different node
numberings to eliminate the learning effect (Fig. 10(a-c)). On each
combination of the edge coloring and layout, three graph analysis
tasks (T1∼T3) were designed for users to complete (Fig. 11(c)).

T1 (1-hop Connectivity): Determine whether two nodes are
connected by an edge directly;

T2 (Degree): Estimate the number of nodes that a particular
node connects to directly;

T3 (Path): Write down the shortest path between two nodes
(including these two).

Examples of the colored graphs used for the three tasks are
given in Fig. 10(a-d) respectively. Each task was repeated three
times for each subject, representing easy, medium and hard tasks
by the different edges/nodes/paths selected.

After completing all the tasks for each coloring method,
subjects also responded to two subjective questions (Q1∼Q2).
Answers were selected from a 1∼7 Likert scale.

Q1 (Usability): How much does this coloring method help you
in completing the tasks and finding the correct answers?

Q2 (User Experience): How much do you like the experience
with this coloring method?

5.3 Study procedure
The study procedure is composed of two sessions: a training
session and a test session. The training session was introduced
to make sure each subject understood all tasks well and became
familiar with the graph drawing and coloring methods. It included
two sample tasks from each task type on a much simpler graph.
The organizer checked the answer of each training task and
explained any ambiguity on the task immediately. The test session
is the formal user study, during which we recorded the subject’s
answer and the completion time in each task. The task completion
time was measured after the subject had read the question, so that
the reading skill variation was excluded.

Note that the study procedure and task designs had been
carefully refined based on the result and feedback from the pilot
study before this test. First, we found that the task accuracy and
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(a) Random coloring on layout 1 (A1), connectivity tasks. Left: easy case; middle: medium case; right: hard case.

(b) Black-only coloring on layout 2 (B2), degree tasks. Left: easy case; middle: medium case; right: hard case.

(c) CLARIFY coloring on layout 3 (C3), path tasks. Left: easy case; middle: medium case; right: hard case.

(d) JRFL coloring on layout 1 (J1), connectivity tasks. Left: easy case; middle: medium case; right: hard case.

Fig. 10. Four colored graph examples tested in the user study, under certain [coloring method] by [layout] by [analysis task] combinations. Not all
combinations are shown due to the space limit.

Fig. 11. The full factorial design to counter-balance negative effects such
as learning, practice and fatigue (the case of the first experiment).

completion time had a coupling effect with the task difficulty,
which may also influence the comparison result on coloring
methods. Therefore, we classified each task into three difficulty
levels according to the edge/node/path chosen in the question (Fig.
10, from left to right). User’s results were compared within the
same level to eliminate the factor of task difficulty. Second, it was

noticed during the experiment, most of the subjects spent a good
amount of time locating the nodes mentioned on each question,
which can be a disturbing factor to the result. Our solution was
to annotate the related nodes in yellow to remind the subjects
of their focuses (Fig. 10). Third, our initial design on the path
task was to ask subjects to count the length of the shortest path.
However, in the pilot study, subjects can either get wrong due to
a misunderstanding of the concept of length for the shortest path
(false negative) or get right by counting the length of a non-path
(false positive). We solved this by asking subjects to write down
the shortest path, for which the correctness of being a path and the
shortest path were checked after the experiment.

All experiment results were analyzed separately on each task.
Significant level was set at 0.05 throughout the analysis.

5.4 Result on comparing black-only and colored draw-
ings
In the first experiment, three coloring methods are compared: the
black-only, the CLARIFY, and the random coloring.
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Fig. 12. The accuracy and completion time of connectivity tasks, reported by their difficulty levels (first experiment).

(a) (b)

Fig. 13. The deviance ratio and completion time of degree tasks, re-
ported by their difficulty levels (first experiment).

Connectivity Task: The user’s accuracy in judging the 1-hop
connectivity is summarized in Fig. 12(a). On easy tasks, it is as
expected that all methods receive a 100% accuracy because there is
no conflicting edge or overlapping to disturb the connectivity, such
as the case in the left part of Fig. 10(a). On hard cases, both the
random coloring and CLARIFY reach a high accuracy of 97.3%,
while the black-only coloring only receives an accuracy of 80.6%.
The result on the medium difficulty level has been a surprise:
the CLARIFY algorithm (77.9%) only gains a tiny advantage
over the black-only coloring (74.9%), and both are worse than
the random coloring (89.2%). In a finer grained analysis, we find
the root cause for this exception. There is one tricky case that the
CLARIFY algorithm uses the color of black for the target edge,
as shown in Fig. 12(c), the same with the black-only coloring
on this edge, while the random coloring chooses a much brighter
nontrivial color for this edge (Fig. 12(b)). The user’s accuracy
in this case is 83.3% for the random coloring, 41.7% for the
CLARIFY algorithm and 33.3% for the black-only coloring, with
a big deviation from the average case. After we remove this tricky
case (about 11% of all cases), the resulting task accuracy plot
becomes Fig. 12(d), in which all three methods receive similar
accuracy under easy and medium difficulty levels.

We conducted the binary logistic regression to capture the
boolean value of the task accuracy. It is shown that on hard
tasks, the contribution of the coloring method to the task accuracy
variation is statistically significant (p = .027). Compared to the
random coloring and the CLARIFY algorithm, the black-only
coloring decreases the likelihood (odds) of correctly answering
each task to 9.3 percents of the random/CLARIFY methods (95%
CI = [1, 87.7], p = .038), controlling for the difference on layouts.
The goodness of fit of this logistic regression model is 0.339
(Nagelkerke R Square). On the completion time, Figure 12(e)

shows the average time in 95% Confidence Interval (CI) error bars.
The black-only method costs the user more time on medium and
hard tasks, but requires less time on easy tasks. From the in-depth
pilot study, this result can be explained by the user feedback that
the black-only drawing spends less of the user’s cognitive effort
in completing very easy tasks. The follow-up analysis of variance
(ANOVA) test reveals a significant difference in the completion
time of coloring methods on hard tasks, by an unequal variance
F-test, F(2,67) = 3.841, p = .026. Because of the non-compliance
to the homogeneity of variances (p < .05 in the Levene test), we
have applied the Welch ANOVA here. By the Games-Howell post
hoc test, there are significant differences between the black-only
method and the CLARIFY algorithm (p = .025), and between the
black-only method and the random coloring (p = .05).

Degree Task: The estimated degree by users is translated
into the measure of deviance ratio, which is the absolute degree
deviance divided by the correct degree. Figure 13(a) summarizes
the deviance ratio of degree tasks. It is clear that on all difficulty
levels, the black-only method suffers from a higher error in degree
tasks, though the difference is not significant in the ANOVA test.
On the completion time, as shown in Fig. 13(b), the differences on
all difficulty levels are quite small.

Path Task: The raw input on the path task is checked in
two phases: 1) whether the answer is a true path in the graph;
2) whether the true path is the shortest one. Again, we use the
deviance ratio as the measure of error for a path, which is the
absolute path length deviance divided by the length of the shortest
path. Figure 14(a) reports the mean accuracy in identifying a true
path. On all difficulty levels, the CLARIFY algorithm achieves
a better accuracy than the black-only method and the random
coloring. However, the significant difference is only observed on
hard tasks: compared to the CLARIFY algorithm, the black-only
method decreases the likelihood (odds) of correctly identifying a
path to 4.5 percents of the CLARIFY algorithm (95% CI = [0.4,
45.5], p = .009), controlling for the difference on layouts. The
goodness of fit of the logistic regression model is 0.69 (Nagelkerke
R Square).

On the identified true paths, we summarize their deviance
ratios to the shortest path in Fig. 14(b). Both graphical and
statistical analyses do not find coherent difference among coloring
methods. On the completion time, as shown in Fig. 14(c), the
performance of three coloring methods is also close to each other.

Subjective Questions: The user’s subjective scores on the
usability and user experience are summarized in Fig. 14(d). It
is shown that the CLARIFY algorithm is better rated than the
random coloring and the black-only coloring. We then apply the
Kruskal-Wallis test to analyze their differences, which does not
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(a) (b)

(c) (d)

Fig. 14. (a)∼(c) The accuracy, deviance ratio and completion time of
path tasks, reported by their difficulty levels; (d) Subjective ratings on
the usability and user experience of three coloring methods (first exper-
iment).

require a normality assumption of the observed data. Results
indicate that there is a large difference among coloring methods
on the usability (χ2(2) = 16.2, p = .067), though not significant.
The mean rank is 70.4 for CLARIFY, 53.6 for the random
coloring, and 42.5 for the black-only coloring (the rank value
has a range of 1 to 108 from 108 feedbacks on three coloring
methods). On the user experience, there is a significant difference
among coloring methods (χ2(2) = 35.4, p = .003). The mean
rank is 71.6 for CLARIFY, 62.9 for the random coloring, and
32 for the black-only coloring. Follow-up Mann-Whitney tests
are conducted to evaluate the pairwise difference among coloring
methods. It is shown that, between CLARIFY and the black-
only coloring, the subjective ratings are significantly different on
both the usability (U = 310.5, p = .019) and the user experience
(U = 157.5, p = .001). Between the random coloring and the
black-only coloring, the subjective ratings are significantly differ-
ent only on the user experience (U = 292.5, p = .018). Between
CLARIFY and the random coloring, the subjective ratings are not
significantly different, though the CLARIFY algorithm receives
better average ratings.

5.5 Result on comparing coloring methods
In the second experiment, two coloring methods are compared: the
CLARIFY coloring and the JRFL coloring.

Connectivity Task: The user’s accuracy in judging the 1-hop
connectivity is summarized in Fig. 15(a). On the easy task, same
with the first experiment, both JRFL and CLARIFY coloring
methods receive a 100% accuracy. On medium and hard tasks,
CLARIFY (100%, 96%) is better than JRFL (96%, 87%), though
the difference is not significant. Note that the tricky case in the
first experiment is avoided by not using layout 3. We conducted
the binary logistic regression to capture the boolean value of
the task accuracy. On all three difficulty levels, the contribution
of the coloring method to the task accuracy variation is not

Fig. 15. The accuracy and completion time of connectivity tasks, re-
ported by their difficulty levels (second experiment).

Fig. 16. The deviance ratio and completion time of degree tasks, re-
ported by their difficulty levels (second experiment).

significant. The largest effect happens in the hard task: compared
to the JRFL coloring, CLARIFY increases the likelihood (odds) of
correctly answering the task to 3.66 times (95% CI = [0.32, 41.7]),
controlling for the difference on layouts. The goodness of fit of this
logistic regression model is 0.317 (Nagelkerke R Square).

On the completion time, Figure 15(b) shows the average time
in 95% Confidence Interval (CI) error bars. JRFL costs the user
more time on all difficulty levels. The follow-up analysis of
variance (ANOVA) test reveals a significant difference on the hard
task, by an unequal variance F-test, F(1,30) = 5.789, p = .023.
Because of the non-compliance to the homogeneity of variances
(p < .05 in the Levene test), we applied the Welch ANOVA here.

Degree Task: Figure 16(a) summarizes the deviance ratio of
degree tasks. It can be seen that on all difficulty levels, JRFL
suffers from a higher error in degree tasks. The differences are not
significant in the ANOVA test for all levels, but on easy task, the
difference is very close to significance (p = .071). On completion
time (Fig. 16(b)), the effect is the same with the connectivity task
that JRFL costs users more time on all difficulty levels. On the
hard task, the difference is significant by the Welch ANOVA,
F(1,30) = 4.393, p = .045.

Path Task: Figure 17(a) reports the mean accuracy in identi-
fying a true path. On all difficulty levels, CLARIFY and JRFL
have a similar path accuracy, with differences smaller than 10%.
By binary logistic regression, the contribution of coloring method
to the path accuracy is not significant on all levels.

On the identified true paths, we summarize their deviance
ratios to the shortest path in Fig. 17(b). On all difficulty levels, the
ANOVA test on the path deviance ratio does not reveal significant
difference between CLARIFY and JRFL.

On the completion time, as shown in Fig. 17(c), JRFL lets
users spend more time than CLARIFY on medium and hard tasks,
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(a) (b)

(c) (d)

Fig. 17. (a)∼(c) The accuracy, deviance ratio and completion time of
path tasks, reported by their difficulty levels; (d) Subjective ratings on
the usability and user experience of two coloring methods (second
experiment).

and slightly less time on the easy task, though all differences are
not significant by the ANOVA test.

Subjective Questions: The user’s subjective scores on the
usability and user experience are summarized in Fig. 17(d). It
is shown that CLARIFY is better rated than JRFL on both scores.
We then apply the Mann-Whitney test to analyze their differences,
which does not require a normality assumption of the observed
data. Results indicate that there is a significant difference between
CLARIFY and JRFL on the usability score (U = 143.0, p = .002).
The mean rank is 30.5 for CLARIFY and 18.5 for JRFL (the rank
value has a range of 1 to 48). On the user experience, the difference
is also significant (U = 188.5, p = .031). The mean rank is 28.7
for CLARIFY and 20.3 for JRFL.

5.6 Summary and implication
First, our user study results demonstrate that the edge coloring
technique (the random and CLARIFY algorithms) can improve
user’s performance in all the three representative graph analysis
tasks studied here, and they receive significantly better subjec-
tive ratings from the user. Exceptions only happen on a few
easy/medium tasks without conflicting edges (e.g., the connec-
tivity task in the left part of Fig. 10(a)). The superiority of
edge coloring is especially notable on hard tasks, where we
obtain significance on the task accuracy of connectivity and path
tasks. These results greatly encourage the use of edge coloring
techniques.

Second, among different coloring algorithms, CLARIFY en-
joys a clear advantage over the previous JRFL algorithm, on all
three graph analysis tasks. Significant differences are observed
on the completion time of connectivity and degree tasks, as well
as the user’s subjective ratings. The advantage of CLARIFY can
be attributed to the larger color discrimination among conflicting
edges, in both intensity and color hue. More details can be found
in Subsection 4.5.

Third, between the random coloring and our CLARIFY al-
gorithm, we should claim that in a lot of cases the difference is
small. However, on path-related hard tasks, as well as the user’s
subjective ratings, CLARIFY performs much better. The algorithm
minimizes the number of colors to distinguish conflicting edges,
so that user’s cognitive efforts on hard tasks are reduced. This
is more important on global tasks (e.g., the path task) than local
tasks (e.g., the connectivity and degree task); and on hard tasks
than easy tasks. Furthermore, CLARIFY is the only algorithm that
can effectively take advantage of a color palette for specific visual
theme. While random coloring could also use a color palette, as
shown in Fig. 9, this often gives unsatisfactory results.

Last but not the least, the user study result suggests a few
improvements to the CLARIFY algorithm design. Most notably,
the brighter non-black color should be used for all edges with
connectivity conflict, so that users can pay more attention to
disambiguating these edges.

6 DISCUSSIONS

The approach of coloring edges for disambiguating drawings has
its limitations. Our working assumption is that the drawing is
displayed as a static image on paper, or on screen. In cases where
an interactive environment is available, interactive techniques such
as “link sliding” and “bring & go” [23] could be more effective.
In such a situation, the algorithms proposed here can be used as
an additional visual aid to the interactive techniques.

While the algorithm proposed here can run on relatively large
graphs, our experience is that for graphs with a lot of edges, a
static image is insufficient to allow the user to clearly see and
follow each edge. Therefore our approach is best suited for small-
to medium-sized graphs. Typical usage scenarios are illustrations
of diagrams, such as computer or biological networks.

During our user study, we found that using black as the default
color for non-conflicting edges may not be the most appropriate
option in some cases. Some users fail to understand that a black
edge passing under a node label is one edge, not two edges.
For example, the edge between nodes 19 and 9 in Fig. 12(c)
may be better visualized using a brighter color as the default
for such edges. Our user study also shows that for the purpose
of distinguishing edges, random coloring also works. However
as shown in Section 4.4, random coloring does not work when
applied to color palettes. The color space for a color palette is
discrete and much smaller, thus it is likely that random coloring
will fail to find the optimal color combination.

There are situations in which it may not be appropriate to use
colors to differentiate edges. Firstly, there is a perceptual cost of
introducing color to the visualization of graphs. As our user study
shows, for easier tasks, colored versions take users more time
to complete. Secondly, colors may be reserved to encode other
information. The proposed method can work with any style spaces.
For example, for disambiguating the edges in Fig. 4, we avoided
using colors for edges in order to accurately display colors of the
nodes. For that drawing we used CLARIFY with grayscale, so that
edges are in black or gray. In general, with CLARIFY, edges can
be differentiated using dashed lines or textures of different style.
This can be achieved by mapping different line styles to a region
or a set of discrete points in the 2D/3D space.

7 CONCLUSIONS

Edge crossings, particularly those at small crossing angles, are
known to be detrimental to the visual understanding of graph
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drawings. This paper proposes an edge coloring algorithm for
disambiguating edges that are in collision because of small cross-
ing angles or partial overlaps. The algorithm, based on a branch-
and-bound procedure applied to a space decomposition of the
color gamut, generates color assignments that maximize color
differences of the colliding edges. The algorithm works for both
continuous color space and discrete color palettes, and can also
be applied to generate coloring for disambiguating virtual maps.
Our user study found that coloring edges in graph drawings helped
users’ performance in major graph analysis tasks, and sometimes
the improvement is significant. Consequently, we have made the
CLARIFY code available as the edgepaint function in the open
source Graphviz software.
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