
Visualizing Dynamic Data with Maps
Daisuke Mashima∗

Georgia Institute of Technology
Stephen G. Kobourov†

University of Arizona
Yifan Hu‡

AT&T Labs Research

ABSTRACT

Maps offer a familiar way to present geographic data (continents,
countries), and additional information (topography, geology), can
be displayed with the help of contours and heat-map overlays. In
this paper we consider visualizing large-scale dynamic relational
data by taking advantage of the geographic map metaphor. We de-
scribe a system that visualizes user traffic on the Internet radio sta-
tion last.fm and address challenges in mental map preservation, as
well as issues in animated map-based visualization.1

Index Terms: H.5.1 [Information Interface and Presentation(I.7)]:
Multimedia Information Systems—Animation; I.3.6 [Computer
Graphics]: Methodology and Techniques

1 INTRODUCTION

The use of a geographic map metaphor for visualizing relational
data was originally described in the context of visualizing recom-
mendations, with TV shows and the similarity between them as the
underlying data [12]. This approach combines graph layout and
graph clustering, together with appropriate coloring of the clusters
and creating boundaries based on clusters and connectivity in the
original graph. A companion paper describes the algorithmic de-
tails of this map generation approach, and how it can be general-
ized to any relational data set [13]. But in both cases the underlying
data is static. The problem becomes harder when we would also
like to visualize some underlying process. For example, instead of
showing a static map of popular TV shows, we would like to see
the evolution of this data over the course of one year, and discover
which shows become more (or less) popular over that time period.

In this paper we explore a new way to visualize dynamic rela-
tional data with the help of the geographic map metaphor. Some
of the challenges identified along the way include: preservation
of the viewer’s mental map under the dynamics in the data, read-
ability of each individual layout, and effective visualization of
the changes happening on the map. We describe one way to ad-
dress these challenges and present the implementation that visual-
izes music trends collected from the Internet radio station last.fm
(http://www.last.fm).

The paper is organized as follows. In Section 2, we overview
GMap algorithm we rely on. Then, in Section 3, we discuss the al-
gorithmic pipeline to address challenges discussed above. Section 4
presents our prototype implementation as well as implementational
efforts to make the visualization better. Section 5 concludes the
paper with future work.

∗e-mail: d.mashima@gatech.edu
†e-mail:kobourov@cs.arizona.edu
‡e-mail:yifanhu@research.att.com

1All map images and movies presented in this paper are available in
high-resolution at http://www2.research.att.com/∼yifanhu/
TrendMap/figures.

1.1 Related Work

In dynamic graph drawing the goal is to maintain a nice layout of
a graph that is modified via operations such as inserting/deleting
edges and inserting/deleting vertices; see the survey paper by
Branke [4]. Brandes and Wagner adapt the force-directed model
to dynamic graphs using a Bayesian framework [3]. Diehl and
Görg [8] consider graphs in a sequence to create smoother transi-
tions. Brandes and Corman [2] present a system for visualizing net-
work evolution in which each modification is shown in a separate
layer of a 3D representation with vertices common to two layers
represented as columns connecting the layers. Thus, mental map
preservation is achieved by pre-computing good locations for the
vertices and fixing the position throughout the layers. Animations
as a means to convey an evolving underlying graph have also been
used in the context of software evolution [6] and scientific literature
visualization [9].

There have been several earlier efforts to visualize the Inter-
net radio station last.fm. Graph-based representations have been
used [1], with each artist as a node, similarity relationships denoted
by edges, and tags used for grouping and coloring. Even though
this visualization contains a good amount of information, such as
popularity, similarity, tags, and so on, it suffers in readability due to
significant node overlapping and fragmentation of groups. Another
last.fm visualization [20] uses self-organizing maps which leads to
a 2D grid layout in which similar bands are close to each other.
but this approach has high computational complexity and does not
scale well to large data sets.

Using maps to visualize non-cartographic data has been consid-
ered in the context of spatialization [23]. Map-like visualization
using layers and terrains to represent text document corpora dates
back to 1995 [24]. The problem of effectively conveying change
over time using a map-based visualization was studied by Har-
rower [15].

Also related is work on visualizing subsets of a set of items. Ar-
eas of interest in a UML diagram can be highlighted using a de-
formed convex hull [5]. Isocontours-based bubblesets can be used
to depict multiple relations defined on a set of items [7]. Auto-
matic Euler diagrams, which show the grouping of subsets of items
by drawing contiguous regions around them have also been consid-
ered [22]. Apart from differences in the algorithms used to generate
regions, all of these approaches differ from ours in that they cre-
ate regions that overlap with each other, whereas we take the map
metaphor strictly and assume that regions do not overlap.

Robertson et al. [21] evaluate the effectiveness of three trend vi-
sualization techniques. The results indicate that animation is not
well suited to data analysis, but it is often enjoyable and exciting.
Since one of the main goals of our work is to create an appeal-
ing and informative visualization for the general public, and not
a precise data analysis tool, we believe our use of animation for
trend visualization is justified. We attempt to address some of the
main shortcomings of animations with the help of strong mental
map preservation and a familiar geographic map metaphor.

2 CREATING MAPS FROM GRAPH DATA

We begin with a summary of the GMap algorithm for generating
maps from static graphs [13]. The input to the algorithm is a rela-
tional data set from which a graph G = (V,E) is extracted. The set



of vertices V corresponds to the objects in the data (e.g., artists) and
the set of edges E corresponds to the relationship between pairs of
objects (e.g., the similarity between a pair of artists). In its full gen-
erality, the graph is vertex-weighted and edge-weighted, with vertex
weights corresponding to some notion of the importance of a ver-
tex and edge weights corresponding to some notion of the closeness
between a pair of vertices. In the case of music, the importance of
a vertex can be determined by the popularity of an artist as derived
from the total number of listeners or by the total number of songs
played in a given time period. The weight of an edge can be defined
by the strength of the similarity between a pair of artists.

In the first step of GMap the graph is embedded in the plane
using a scalable force-directed algorithm [10] or multidimensional
scaling (MDS) [17]. In the second step, a cluster analysis is per-
formed in order to group vertices into clusters, using a modularity-
based clustering algorithm [18]. We use information from the clus-
tering to guide the MDS-based layout. In the third step of GMap,
the geographic map corresponding to the data set is created, based
on a modified Voronoi diagram of the vertices, which in turn is
determined by the embedding and clustering. Here “countries”
are created from clusters, and “continents” and “islands” are cre-
ated from groups of neighboring countries. Borders between coun-
tries and at the periphery of continents and islands are created in
fractal-like fashion. Finally, colors are assigned with the goal that
no two adjacent countries have colors that are too similar. In the
context of visualizing dynamic data where the relative change of
popularity of important, we also use a heat-map overlay to high-
light the “hot” regions. Further geographic components can be
added to strengthen the map metaphor. For instance, edges can be
made semi-transparent or even modified to resemble road networks.
In places where there are large empty spaces between vertices in
neighboring clusters, lakes, rivers, or mountains can be added, in
order to emphasize the separation.

3 MAPS OF DYNAMIC DATA

Static maps of relational data lead to visually appealing representa-
tions, which show more than just the underlying vertices and edges.
Specifically, by explicitly grouping vertices into different colored
regions, viewers of the data can quickly identify clusters and rela-
tions between clusters. Moreover, this explicit grouping leads to
easy identification of central and peripheral vertices within each
cluster.

Extending traditional graph drawing algorithms from static to
dynamic graphs is a difficult problem. In most proposed solutions,
the typical challenges are those of preserving the mental map of
a viewer and ensuring readability of each drawing. Changes are
visualized by animation, which can be generated by concatenat-
ing static maps, thus providing continuity from one layout to the
next. Whereas in dynamic graph drawing it is perfectly reason-
able to have vertices move from one moment in time to the next,
moving “countries” and “cities” within the countries on a map can
be confusing and counter-intuitive. Also, if the layout from one
time to the next is significantly different, it is likely that viewers
will quickly get lost. A common way to deal with this problem
is anchoring some vertices that appear in two or more subsequent
drawings. Additionally, the way to encode metrics and changes into
the map metaphor needs to be considered. Next we describe how
we address some of these challenges. The algorithmic pipeline dis-
cussed in Section 3.2 to 3.4 is summarized in Figure 1.

3.1 Last.fm Data
As an Internet radio and music community website, last.fm has over
30 million users. Using a music recommender system, last.fm rec-
ommends music based on user profiles. Over several years the rec-
ommender system has collected information about how one musi-
cian is related to another in terms of how many listeners of one also

Figure 1: Algorithmic pipeline to create a base map from a canonical
map. (1) Canonical map is created with all crawled artists, by embed-
ding them using MDS and smaller-sized label fonts. (2) From each
pair of daily-crawled files that are D days apart, 250 artists with the
highest playcount increase are extracted. (3) Position data of the hot
artists are extracted from the canonical map. (4) All label font sizes
are set to the average size. (5) Overlap removal is applied, and the
resulting layout is used as a base map.

enjoy the other. For each musician, the last.fm website lists related
(similar) musicians. For example, Beethoven is considered to have
“super similarity” to Mozart, Bach, Brahms, “very high similarity”
to Mendelssohn, Schumann, Vivaldi, and so on. The website also
provides the number of listeners of each musician. Using this data
and daily crawls using the provided API, we create the underly-
ing graph with artists as vertices and with edges determined by the
strength of the similarity between the artists at the two endpoints.

3.2 Mental Map Preservation
Mental map preservation is important when visualizing dynamic
data. In general, vertices and edges may appear and disappear over
time. If a vertex appears, then disappears, and appears again, it
would be desirable to use the same location in the layout. Specif-
ically, in the last.fm data artists that were not in the previous map
may suddenly become popular while others may drop off from the
top.

To address this problem, we create a “canonical map” that stores
the position information of a much larger graph than the subgraph
that is actually shown. Then, when displaying a specific subgraph
consisting of top artists at a given time, we use the pre-computed
position information from the canonical map (Figure 1(1)). In this
way, as long as the same canonical map is used, the same artists
appear in the same position, thereby helping preserve a viewer’s
mental map. Updating a canonical map is anyway mandatory to
keep up with trend changes, but it can be done less frequently, for
instance once a month, as long as the number of artists included
is large enough, which most likely contains all artists that could
appear in the visualization before the next update.

3.3 Map Readability
Our initial attempt at obtaining a canonical map with GMap of the
18,000 artists crawled from the top artists in last.fm immediately



(a) (b)

Figure 2: (a) Map of 18,000 artists (b) Map of 18,000 artists using adjusted edge lengths

exposed a problem with this approach. We used modularity and
MDS for clustering and embedding, respectively. The (embedding,
clustering) pairing seemed applicable, given that in the underlying
graph the strength of an edge corresponds to the measure of similar-
ity between the two artists it connects. Since the inverse of similar-
ity can be naturally interpreted as a distance, MDS can determine a
layout that matches the underlying clustering.

However, the resulting map was far from ideal; see Figure 2 (a).
The most conspicuous problem is the fragmentation of countries
into disjoint regions. We found that, on average, one cluster (coun-
try) is divided into over 100 regions. Even though this canonical
map is never intended to be seen by viewers, such fragmentation
will negatively affect the readability of resulting visualization. In
fact, the placement of the vertices determined by this canonical map
led to significant fragmentation even in a map created for the top
500 artists (in terms of the number of listeners). Using a force-
directed layout [10] or a LinLog layout [19] in place of MDS re-
sulted in even more fragmentation.

One possibility is that the fragmentation problem is to some ex-
tent caused by the independent nature of the clustering and the em-
bedding steps. Therefore, we combined the two steps by using the
clustering results as additional input parameters of the embedding
process. In other words, based on the clustering results, we increase
the edge lengths between artists that belong to different clusters,
leading to a much better canonical map; see Figure 2 (b). In this
map, fragmentation is significantly reduced although there are ir-
regularities near some country boundaries. In addition, we did not
see any fragmentation in a map of top 500 artists created based on
a canonical map generated in this way.

It is worth mentioning that GMap uses a label overlap-removal
routine [11] to ensure that vertex labels are readable. This is ac-
complished by moving apart vertices with overlapping labels, but
can potentially lead to a vertex near a border between two coun-
tries “jumping” into the wrong country. By strengthening the edges
between vertices in the same cluster, we help such vertices stay in
their own countries. Even though such edge length modification
distorts the underlying raw similarity information, most of the re-
sulting layout changes are local.

Additionally, since smaller number of hot artists will be ex-
tracted out of a canonical map in the later step, we need to deter-
mine node positions densely in order to prevent the resulting map

from being too sparse. To do embedding in that way, we chose to
use smaller label font sizes that are proportional to the popularity
of artists; see Figure 1 (1).

3.4 Mental Map Preserving Node and Label Placement
A general issue regarding the visualization is the number of artists
displayed in a single map. As we target a regular computer screen,
the number of artists that can be shown depends on how many non-
overlapping and readable labels can fit on it. Not surprisingly maps
with 1000 labeled artists turned out to be unreadable. Cutting down
the number of artists to the top 250 leads to better results.

Even within the top 250 artists, some are much more popular
than others. One straightforward way is to represent the popularity
of an artist by varying the font size of the labels, as in geographic
maps where the names of major cities are drawn with larger fonts
than those of smaller towns. To modify the font sizes, we use the
following conversion for each artist displayed.

ModFontSizea = BaseSize+Variation∗ f (popa) (1)

where

f (popa) =
popa−AV ERAGEi∈A(popi)

MAX i∈A(popi)−AV ERAGE i∈A(popi)
(2)

Here, the set A denotes all artists to be shown on a map, and
popa indicates a popularity metric (e.g., the number of listen-
ers) of an artist a ∈ A. Note that f (popa) in (2) is scaled to be
within [−1,1]. Therefore the resulting font size ModFontSizea is
in [BaseSize−Variation,BaseSize +Variation], with a mean font
size of BaseSize. A sample map created under this configuration
is shown in Figure 3. Related to font size modification is the tim-
ing of the label overlap-removal step [11]. Because we modify the
font sizes after the layout of the nodes in the canonical map has
been determined, the resized labels could lead to new overlaps in
crowded areas, once again making the maps difficult to read. Ap-
plying another overlap-removal step, once the labels have been re-
sized, makes the maps readable but at the expense of modifications
in the positions of labels from one time frame to the next. Although
this process could be effective for the sake of better presentation, the
negative side effects (inconsistent label positions between consec-
utive frames) seem to outweigh the advantages. While such move-
ments of labels over time would draw viewers’ attention to an area



Figure 3: The top 250 artists: showing artist popularity through font sizes, while also displaying similarity using the geographic map metaphor.

where there are changes, such movements do not fit our general
approach for maintaining a viewer’s mental map by having a fixed
geographic map as a reference.

In order to benefit from overlap removal without moving labels
from frame to frame, we adopted the following approach, summa-
rized in Figure 1. First, we create the canonical map. Second, we
form the superset of artists that appear on any of the map frames to
be included in the animation. Third, we extract the position infor-
mation for these artists from the canonical map. Fourth, we set the
font sizes of all labels on a map to the average size, i.e. BaseSize
in formula (1). Fifth, we perform an overlap-removal step and call
the final result the “base map” because it is used to create each map
frame in the animation. As a result of the pre-processing, the po-
sitions of artists and shapes of countries remain unchanged within
one animation.

Note, however, that since this base map is generated every time
we create an animation, the node positions are not exactly consis-
tent among animations created for different time periods. For ex-
ample, today’s animation and an animation created one week later
could have slightly different node positions and country boundaries
owing to both the overlap removal and difference in artists to be
displayed. But, when those base maps use the same underlying
canonical map, such differences are minimal.

When we evaluated the animations created by the above pro-
cedure, we found that the lack of easily recognizable differences
among maps can be a problem. Too much of a good thing (men-
tal map preservation) can be bad. Specifically, it is difficult to spot
the differences, as only the font sizes of some artists are changing
between map frames, while other components (e.g., size and shape
of countries) remain exactly the same (a sample animation can be
found in http://www2.research.att.com/∼yifanhu/
TrendMap/figures). As we would like to keep the mental map
of viewers unchanged from one frame to the next, and just changing
the font sizes does not convey the changes in the data, we employ
another visual cue that is well suited to maps, namely heat-map
overlays. We discuss the metric used to create such heat-maps next,
and give the detailed procedure for creating them in Section 4.

3.5 Metric for Visualization
A challenge in visualization of dynamic data is defining a suitable
metric which allows us to extract “hot” objects (e.g., artists) out of
the canonical map and visualizing them meaningfully. Since the
suitable metric is highly context-specific, our discussion here fo-

cuses on last.fm data and their API. For example, the number of lis-
teners for each artist and the number of times each artist’s songs are
played (also called playcounts) both seem to be useful. However,
these numbers are all cumulative. In other words, artists that have
been around for a long time tend to have higher values than newer
artists who only recently attracted attention. While such numbers
are useful to see long-term popularity, it implies that these values
largely depend on the past data, and are not significantly affected
by recent and short-term dynamics, which are often of interest to
the viewers.

Ideally, both long-term and short-term metrics should be incor-
porated in the visualization. Thus, while using the cumulative num-
ber of listeners as a long-term metric, we also consider the short-
term one, which is more sensitive to abrupt changes. To prevent
the bias by past data, we focus on the difference in these values
over a fixed time interval. The ideal interval varies depending on
the settings and nature of the target data set. In the case of last.fm
data, these numbers are updated weekly, so 7-day or longer interval
is appropriate. Our preliminary analysis indicates that playcounts
capture the dynamics of the moment well, so in our implementation
we use differences in playcounts as a short-term popularity metric.

4 IMPLEMENTATION

Following the approach discussed in Section 3, we describe our vi-
sualization system applied to last.fm data. In addition, we will dis-
cuss how we addressed the four additional challenges posed on an-
imated cartographic maps, namely disappearance (blink and you’ll
miss it), attention (where to look as the animation is playing), com-
plexity (animated maps try to do too much and end up saying very
little), and confidence (viewers of animations are less confident of
the knowledge they acquire from animated data than from static
data) [15].

A system implementation overview is shown in Figure 4. The
system contains both monthly tasks and daily tasks. The crawling
is done using a custom-made Java program and the last.fm API. We
use modularity-based clustering [19] and neato in Graphviz [14]
for the MDS-based embedding. To generate animations, we use
ImageMagick (http://www.imagemagick.org/).
Monthly tasks: creating and updating a canonical map that con-
tains position information of 18,000 artists. Currently, crawling
starts with the top-10 artists from the top-50 popular tags on last.fm,
and recursively collects information about artists that are similar to
them, in a breadth-first fashion. The result is stored in the DOT for-



Figure 4: Overview of Implementation

(a) (b) (c)

Figure 5: (a) Highlighting in blue areas where artists are about to disappear: Bon Jovi, Deep Purple, Elvis, Simon & Garfunkel, CCR, and Eric Clapton. (b)
Highlighting in yellow the areas where new artists are about to appear. (c) An image after the appearing/increasing phase showing newcomers: Bruce Springsteen,
Neil Young, The Kinks, and The Beach Boys.

mat used by Graphviz, with edge weights defined by the “similar-
ity” values provided by last.fm. This relational data set is fed into
the clustering module. Based on this clustering result, we adjust
edge lengths as follows in order to reinforce the edges connecting
nodes in the same cluster.

1. The length of intra-cluster edges is set to 1.

2. The length of inter-cluster edges is set to a constant L > 1 (cur-
rently L = 75 is used based on the results of our preliminary
trials).

Following this step, the graph with adjusted edge lengths is passed
on to neato, which then computes the node positions for the
18,000 artists. The output from neato is used for vertex place-
ment in the canonical map.
Daily tasks: crawling, base map creation, and animated heat-map
creation. Crawling is done independently and in much the same

way as in the monthly task. The results of daily crawls are kept
as separate DOT files. It should be possible to make the size of
the daily crawl much smaller than the monthly one without miss-
ing new and important artists, but we have not explored this as the
crawling of 18,000 artists usually completes in under 12 hours us-
ing one PC.

Base map: selecting daily-crawl results that are in the given time
window (one of the configurable parameters in the current imple-
mentation) and, for each pair of daily-crawl results with timestamps
that are D days apart, computing the differences in playcounts of all
the artists. D can also be arbitrarily adjusted based on a character-
istic of the target data set or a preferred degree of “sensitivity to
changes”. Based on these differences in playcounts, the top-250
artists are extracted for each pair of crawled data files, which are D
days apart, in the time window. The superset of these artists is saved
as a list of “hot” artists. Note that this list could contain more than
250 artists. Since the total number was usually less than 300, the



Figure 6: A snapshot of trend visualization of last.fm. On the heat-map, darkness of the color indicates the degree of increase in short-term popularity while font
sizes of artists correspond to long-term popularity. Labels of artists who are out of the top 250 are hidden and colored white. Clusters based on similarity are
represented with black boundary lines as well as label colors, which are mapped with country names shown on the top of the map. The date label located on the
top-left corner indicates the timestamp of the heat-map displayed, and the progress bar on the bottom-left shows the position of the map in the entire animation.

base map remains readable and we include all of them. (As shown
later in an example, artists that are not in the top 250 in each frame
are hidden.) The position information for nodes in the base map is
extracted from the canonical map. As discussed in Section 3.4, we
also apply a label overlap-removal step here.
Metrics Visualization: creating an animation that visualizes the
changes. Each heat-map frame to be included in an animation is
created by modifying font sizes of the base map as well as cate-
gorizing artists in the base map into heat-map clusters. While the
latter is done based on the magnitude of difference in playcounts,
we use the cumulative number of listeners for each artist to de-
termine the font sizes with formula (1). Our implementation uses
0.5×BaseSize as Variation. We also need to establish groups of
artists that have similar degree of change in order to draw a heat-
map. There are a couple of ways to do this. For example, we can
use playcount differences to classify artists, perhaps with suitable
log scaling, and map the scaled differences to a color palette. Al-
ternatively, we can utilize the ranking of artists in terms of the de-
gree of change in playcounts to bin artists, and map bin indices to
a color palette. We choose the latter option and use a single-hue
color scheme so that artists with larger increase in popularity are
assigned darker red colors. In this way, both the overall popularity
and the temporal ups and downs of each artist can be visualized in
the map.
Countries: when using heat-map overlay, each country can no
longer be colored with a uniform color. Even though country
boundaries help define the countries, additional visual cues are
needed. Otherwise, viewers could have difficulty in identifying
similarity relationships when countries are fragmented. We use the
original clustering information based on similarity to define a label
color for each artist so that artists in the same country have the same
color. Currently we simply select a label color from a static palette,
but this can be improved, for example by using a maximal differ-
ential color scheme [16], which is part of our future work. Within
a country, different shades of the background color indicate vari-
ations in popularity. Each country is also automatically “named”;
these names are created by taking the top two most frequent tags

assigned to artists in the corresponding country. A list of country
names written with the color associated with that country is pre-
sented above the animation; see Figure 6. In this way we obtain a
labeled heat-map image, or the “base heat-map”, and this process
is repeated for each pair of daily-crawl results in the target time
window that are D days apart.
Attention, (Dis)appearance, Complexity, and Confidence: The
base heat-map images are concatenated in chronological order to
generate a single animated GIF file. Note that we can arbitrar-
ily change the number of frames in an animation by adjusting the
size of the time window accordingly. However, naive concatena-
tion of image files would create an animation that is difficult for
a viewer to follow because there are too many changes happening
at the same time: artists disappearing/appearing in the top 250, in
addition to heat-map color changes representing artists remaining
in the top 250 but whose popularity has changed. We break down
these changes in a few intermediate steps. To emphasize appear-
ance and disappearance of artists from one frame to another, we
create intermediate frames for each pair of base heat-maps as fol-
lows.

1. A frame that highlights in blue all disappearing artists; see
Figure 5(a).

2. A frame that hides all disappearing artists and updates heat-
map colors for artists decreasing their popularity.

3. A frame that highlights in yellow all appearing artists; see
Figure 5(b).

4. A frame that shows the artists joining the top 250 and updates
heat-map colors for artists increasing their popularity, which
is also the next base heat-map; see Figure 5(c).

Thus frames 1 and 2 correspond to a “disappearing/decreasing”
phase and frame 3 and 4 establish an “appearing/increasing” phase.
To help viewers understand which part of the animation they are
watching, we also include a date label and a progress bar.



Figure 7: A sequence of animation frames between two consecutive base heat-maps including blue and yellow highlights.



A snapshot of our last.fm visualization, which incorporates all
the components discussed so far, is shown in Figure 6. Figure 7
shows a sequence of animation frames between two consecutive
base heat-maps (for May 1, 2010 and May 5, 2010). An animated
version is also available online at http://www2.research.
att.com/∼yifanhu/TrendMap/. The current implementa-
tion of our system accepts the entire duration of the animation and
the number of heat-map frames as configurable parameters, and the
interval between frames (4 days in this example) is determined from
these parameters. As can be seen in this example, ups and downs in
short-term popularity can be easily recognized by comparing dark-
ness of colors. Artists joining or dropping off from the top 250
are highlighted, and artists out of the top 250 are hidden. In ad-
dition, changes between frames are two-phased which helps view-
ers identify and keep track of differences. Detailed evaluation of
the “complexity” of these maps requires a user study. However,
we believe that the metrics are reasonably encoded in familiar map
components and that the geographic map metaphor helps viewers
intuitively understand. For example, short-term changes in play-
counts are encoded with color changes, while long-term popular-
ity changes are encoded with label font sizes. The combination of
these long-term and short-term metrics allows the viewer to derive
additional information, such as spotting a rising star that suddenly
draws public attention. Country boundaries and label colors help
the viewer understand the relationships between similar artists at a
glance. More detailed similarity information is also conveyed by
semi-transparent edges, which come from the underlying graph.

One of the best ways to increase viewer “confidence”, when
looking at animated maps, is to give the viewer the ability
to pause, rewind, and replay the animation. As this is diffi-
cult to achieve with a GIF animation, we also provide movies
which offer better control (http://www2.research.att.
com/∼yifanhu/TrendMap/).

After a brief review of the animation used to illustrate this paper,
it is easy to identify some trends and patterns. Several artists, such
as the Beatles, Lady Gaga, and Radiohead, are popular through-
out the time period. Others, such as Michael Jackson, fluctuate in
popularity but remain in the top 250. Still others, such as Adam
Lambert from American Idol go in and out of the top 250. We can
also spot some events in music industry. For example, the release
of the new album “Fever” by Bullet For My Valentine on April 27
is accompanied by a characteristic color change: the band was pink
through much of April, but suddenly surged to dark red on April 27
and remained so thereafter.

5 CONCLUSIONS AND FUTURE WORK

In this paper we explored a way to visualize large-scale dynamic
relational data with the help of the geographic map metaphor. We
addressed some challenges created by the dynamics in the data and
presented a system that visualizes the user traffic on the Internet
radio station last.fm with a heat-map animation. We believe the
applicability of our approach is not limited to the last.fm data. For
example, our scheme can be used, with minor modification in the
data collection module, to visualize trends in the popularity of web
sites, TV shows, etc., where similarity and popularity information
are easy to define.

The major component of our future work is the evaluation of
the effectiveness of our visualization through the user study. This
would also include the calibration of parameters (duration of anima-
tion, interval for difference calculation, etc.). We are also working
on implementing a functional interactive interface. As the underly-
ing data is a map, we are exploring pan-and-zoom Google Maps-
like interactions. The resulting system can be further enhanced
by allowing access to external online contents (e.g., accessing the
last.fm artist web pages, or wikipedia pages) by clicking on node
labels. Although our prototype uses animated GIF, exploring other

file-size efficient ways of creating the animation is part of our fu-
ture work. Finally, offering several metrics for visualization would
result in a more powerful system; for instance, our system uses
a difference in the number of times each artist’s songs are played
(playcounts), while the second-order difference in playcounts will
allow for more precise view of the momentum of an artist.

REFERENCES

[1] Reconstructing the structure of the world-wide music scene with
last.fm. http://sixdegrees.hu/last.fm/index.html.

[2] U. Brandes and S. R. Corman. Visual unrolling of network evolution
and the analysis of dynamic discourse. In IEEE INFOVIS’02, pages
145–151, 2002.

[3] U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph
layout. In 5th Symp. on Graph Drawing (GD), pages 236–247, 1998.

[4] J. Branke. Dynamic graph drawing. Drawing graphs, 2025:228–246,
2001.

[5] H. Byelas and A. Telea. Visualization of areas of interest in software
architecture diagrams. In ACM SoftVis’06, pages 105–114, 2006.

[6] C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A
system for graph-based visualization of the evolution of software. In
ACM SoftVis’03, pages 77–86, 2003.

[7] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set
relations with isocontours over existing visualizations. IEEE TVCG,
15(6):1009–1016, 2009.

[8] S. Diehl and C. Görg. Graphs, they are changing. In 10th Symp. on
Graph Drawing (GD), pages 23–30, 2002.

[9] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee.
GraphAEL: Graph animations with evolving layouts. In 11th Symp.
on Graph Drawing (GD), pages 98–110, 2003.

[10] T. Fruchterman and E. Reingold. Graph drawing by force directed
placement. Software-Practice and Experience, 21:1129–1164, 1991.

[11] E. R. Gansner and Y. F. Hu. Efficient node overlap removal using
a proximity stress model. In 16th Symp. on Graph Drawing (GD),
volume 5417, pages 206–217, 2008.

[12] E. R. Gansner, Y. F. Hu, S. Kobourov, and C. Volinsky. Putting rec-
ommendations on the map: visualizing clusters and relations. In 3rd
ACM Conf. on Recommender Systems (RecSys), pages 345–348, 2009.

[13] E. R. Gansner, Y. F. Hu, and S. G. Kobourov. GMap: Visualizing
graphs and clusters as maps. In IEEE Pacific Visualization Symp.
(PacVis), pages 201–208, 2010.

[14] E. R. Gansner and S. North. An open graph visualization system and
its applications to software engineering. Software - Practice & Expe-
rience, 30:1203–1233, 2000.

[15] M. Harrower. Tips for designing effective animated maps. Carto-
graphic Perspectives, 44:63–65, 2003.

[16] Y. F. Hu, S. Kobourov, and S. Veeramoni. On maximum differential
graph coloring. In 18th Symp. on Graph Drawing (GD), 2010.

[17] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage Press,
1978.

[18] M. E. J. Newman. Modularity and community structure in networks.
Proc. Natl. Acad. Sci. USA, 103:8577–8582, 2006.

[19] A. Noack. Energy-based clustering of graphs with nonuniform de-
grees. In 13th Symp. on Graph Drawing (GD), pages 309–320, 2005.

[20] E. Pampalk. Islands of music - analysis, organization, and visualiza-
tion of music archives. Journal of the Austrian Society for Artificial
Intelligence, 22(4):20–23, 2003.

[21] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effec-
tiveness of animation in trend visualization. IEEE Transactions on
Visualization and Computer Graphics, 14:1325–1332, 2008.

[22] P. Simonetto, D. Auber, and D. Archambault. Fully automatic visual-
isation of overlapping sets. Computer Graphics Forum, 28:967–974,
2009.

[23] A. Skupin and S. I. Fabrikant. Spatialization methods: a cartographic
research agenda for non-geographic information visualization. Car-
tography and Geographic Information Science, 30:95–119, 2003.

[24] J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow. Visualizing the non-visual: spatial analysis and interac-
tion with information from text documents. In IEEE Symp. on Infor-
mation Visualization, pages 51–58, 1995.


