
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, MAY 2012 1

A Maxent-Stress Model for Graph Layout
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In some applications of graph visualization, input edges have associated target lengths. Dealing
with these lengths is a challenge, especially for large graphs. Stress models are often employed in
this situation. However, the traditional full stress model is not scalable due to its reliance on an initial
all-pairs shortest path calculation. A number of fast approximation algorithms have been proposed.
While they work well for some graphs, the results are less satisfactory on graphs of intrinsically
high dimension, because some nodes may be placed too close together, or even share the same
position. We propose a solution, called the maxent-stress model, which applies the principle of
maximum entropy to cope with the extra degrees of freedom. We describe a force-augmented
stress majorization algorithm that solves the maxent-stress model. Numerical results show that
the algorithm scales well, and provides acceptable layouts for large, non-rigid graphs. This also
has potential applications to scalable algorithms for statistical multidimensional scaling (MDS) with
variable distances.
Index Terms—graph drawing; metric embedding; low-dimensional embedding
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1 INTRODUCTION

Graph drawing using virtual physical models on undirected
graphs is among the most common methods of visualizing
relationships between objects. This method has succeeded for
several reasons: it can be applied to any undirected graph; it
often conveys interesting graph properties, such as symmetry
and clustering relationships; and some variants can be imple-
mented by scalable methods.

Two virtual physical models are among the most popular.
The spring-electrical model [11], [13] treats edges as springs
that pull nodes together, and nodes as electrically-charged
particles that repel each other. High quality, efficient imple-
mentations have been proposed [17], [20], [40] based on a
multilevel approach and fast force approximation within a
suitable space decomposition scheme. They scale to graphs
of millions of vertices and edges.

While the spring-electrical model has proven scalable and
yields high quality layouts, it has problems when edges have
predefined target lengths. In the spring-electrical model it is
possible to encode edge lengths in the attractive and repulsive
forces (e.g., [2], section 10.1), but such treatment is not
rigorous

In contrast, the (full) stress model assumes that there are
springs connecting vertex pairs of the graph. The energy of
this spring system is

∑
i, j∈V

wi j
(∥∥xi− x j

∥∥−di j
)2, (1)

A preliminary version of this paper appeared in the Proceedings of the 5th
IEEE PacificVis Symposium.

where we assume a graph G = {V,E}, with V the set of
vertices and E the set of edges. In (1), di j is the ideal distance
between vertices i and j, and wi j is a weight factor. A layout
that minimizes this stress energy is taken as an optimal layout
of the graph.

The stress model has its roots in multidimensional scaling
(MDS) [28] which was eventually applied to graph drawing
[25], [29]. Note that typically we are given only the ideal
distance between vertices that share an edge, which is taken
to be unit length for graphs without predefined edge lengths.
For other vertex pairs, we define di j as the length of a shortest
path between vertex i and j.

Related to the stress model is the strain model, also known
as classical scaling. It relies on the fact that if the edge length
can be achieved exactly using a set of node positions, then
inner products of the positions can be expressed as the squared
and double centered distances [5]. Based on this observation,
node positions can be found by an eigen-decomposition of a
matrix. Because the strain model does not fit distances directly,
graph layouts using this model are not as satisfactory as those
using the stress model [5], but they can be used as a good
starting point for the stress model.

In solving the full stress or strain model, the ideal distances
between all pairs of vertices must be calculated. Johnson’s
algorithm [24] takes O(|V |2 log |V |+ |V ||E|) time, and O(|V |2)
memory. (A slightly faster, but still quadratic, algorithm is also
known [34].) For large graphs, these models are computation-
ally too expensive.

A number of strategies [10], [15] have been proposed
to approximately minimize the stress or strain model. One
notable effort is that of PivotMDS of Brandes and Pich [4].
This is a fast approximation algorithm for solving the strain
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model, which requires distance calculations from all nodes
to only a few chosen nodes. Furthermore, Brandes and Pich
suggested using this as a starting point for solving a sparse
version of the stress model. The sparse model considers node
pairs that are k or less hops away, where k�|V |. They showed
this to be efficient and of good quality for many graphs.
However, they noted that the algorithm tends to behave better
on graphs of small dimension, and concluded that “further
research on reliable sparsification schemes is needed” [5]. This
is because specifying only local distances for node pairs is not
sufficient for avoiding the problem often observed in classical
scaling and in the high-dimensional embedding algorithm [18],
where in non-rigid graphs, such as trees, multiple nodes share
the same position.

In this paper, we consider embedding graphs with specified
non-unit edge lengths. The limitations of previous work,
mentioned above, prompt us to seek an alternative algorithm
that scales to large graphs, handles edge lengths well, and
does not degrade on non-rigid graphs. Our motivation comes
from the observation that, for graph drawing, the ideal distance
of each edge is the only information given. To assume that
the missing ideal distance between non-neighboring vertices
should be the shortest graph-theoretic distance is reasonable,
but does add artificial information that is not given in the
input. And since it is not practical to calculate all-pairs shortest
distances for large graphs anyway, we need some way to
resolve the extra degrees of freedom in the node placement.

An interesting possibility is to apply a physics principle
which states that, subject to known constraints, a system
always settles to a state of maximum entropy. The maximum
entropy principle provides the least-biased estimate possible on
the given information, one that is “maximally noncommittal
with regard to missing information” [23]. This principle is
also believed to give rise to aesthetic beauty in nature. In the
words of architect Greg Lynn [30], whenever there is a lack
of information, nature reverts to symmetry – “symmetry is
the absence of information.” This principle has been success-
fully applied in many areas of computational science, such
as species distribution modeling [35] and natural language
processing [3]. We propose that the same principle can be
applied in graph drawing. An optimal layout should be one
that attempts to satisfy the given ideal distances as much
as possible. Since this itself is not sufficient to determine
the layout of all nodes, the remaining degrees of freedom
can be resolved through the principle of maximum entropy.
We therefore propose a maximum entropy stress model (or
maxent-stress model) for drawing graphs with edge distances
specified.

The rest of the paper is organized as follows. In Section 2,
we discuss related work. Section 3 gives the maxent-stress
model, and a way of solving it. Section 4 evaluates our
algorithm experimentally. Section 5 presents a summary and
topics for further study.

Additional animated examples that illustrate the new algo-
rithm can be found at the paper website http://www2.research.
att.com/∼yifanhu/maxent.

2 RELATED WORK

Embedding high dimensional data to fit known distances has
applications in many fields. Therefore, it is not a surprise that
related work can be found not only in graph drawing, but in
other areas, such as machine learning.

2.1 Graph drawing

Various techniques have been proposed for drawing large
graphs with specified edge lengths. PivotMDS [4] was men-
tioned above. Another technique is to encode edge lengths
in a spring model, and solve it in some scalable manner.
The GRIP [14] algorithm takes this approach. GRIP is a
multilevel algorithm, with coarsening carried out by maximal
independent set based filtration. On coarse levels, a Kamada-
Kawai algorithm [25] is applied to each node within a local
neighborhood of the original graph, but on the finest level,
a localized Fruchterman-Reingold algorithm is used [13].
Because of this last step, the algorithm does not strictly solve
a stress model.

Another approach was taken by Khoury et al. [26]. While
we cope with the unknown distances between certain nodes by
adding a complementary objective function, they showed how
to utilize a low-rank SVD of the matrix consisting of distances
from k-centers to all vertices to find approximate solutions for
the Laplacian system involved in stress majorization. Their
approach works efficiently for the special case of wi j = 1/di j
in (1).

Although it essentially ignores edge lengths, the binary
stress model of Koren and Civril [27] is stylistically related
to ours, in that the first term attempts to specify edge lengths
(as uniformly 0), the second term has the effect of uniformly
spacing the nodes. Specifically, in that model, there is a
distance of 0 between nodes sharing an edge, and a distance
of 1 otherwise, given the model

∑
{i, j}∈E

‖xi− x j‖2 +α ∑
{i, j}/∈E

(‖xi− x j‖−1)2 .

Similarly, Noack [32], [33] has proposed the LinLog model
and, more generally, the r-PolyLog model,

∑
{i, j}∈E

‖xi− x j‖r− ∑
i, j∈V

ln‖xi− x j‖,

where, in particular, the second term is suggestive of our use
of entropy.

There have been other suggestions for filling in missing
node-node distance information. For example, Cohen [8]
proposed an electrical resistance model for computing these
distances. It takes into account multiple pathways between
nodes, reducing distances between endpoints when there are
more paths. Although this can be useful in emphasizing
highly-connected clusters, it provides no help in efficiently
computing a layout for large graphs.
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2.2 Machine learning and dimensionality reduction
The machine learning community has contributed a great
deal of work recently on the related problem of dimension
reduction for high-dimensional data. Unlike our problem, this
assumes that distances between all data pairs are given, and the
challenge is to efficiently create an embedding that preserves
important local structure. Of particular note, Chen and Buja
[7] use a force paradigm to define localized versions of MDS
stress functions. They assume that local ideal distances are
given for some pairs of items, and set the global distances
to some very large value. Through algebraic manipulation, a
stress energy model based on these distances is then converted
into two terms:

∑
{i, j}∈S

(∥∥xi− x j‖−di j
)2− t ∑

(i, j)/∈S
‖xi− x j‖, (2)

the first term being the sparse stress energy, and the second the
energy related to distances of node pairs. Here item {i, j} is in
the set of vertex pairs S if j is among the k-nearest neighbors
of i. They show that this model, LMDS, with careful tuning,
outperforms a range of other methods, including MDS, on
image clustering. Their work differs from ours in its motivation
and in the energy model used. In addition, they applied LMDS
only to relatively small examples of up to 1956 nodes. Other
than the selection of the parameter t, they do not give details on
the implementation of the algorithm, so it is difficult to assess
its scalability. While the motivation for LMDS is really data
clustering, we implemented and tested a variant of LMDS but
did not find it to be well-suited to graph layout (Section 4.5).

Chalmers [6] proposed the first linear-time iterative algo-
rithm for dimensionality reduction in the context of visualiza-
tion via stochastic sampling, and Ingram et al. [22] proposed
Glimmer, a multiscale variant adapted to run efficiently with
hardware GPU acceleration. In these works, a single entry of
the distance matrix is assumed to be available in constant time,
which is valid for multi-dimensional data, but not for graphs,
where graph theoretical distances must be calculated.

2.3 Symmetry and aesthetics
In Section 1, we argued that symmetry should be used to
fill in the missing node-node distance information. Symmetry
is a powerful visual property, and is easily recognized and
remembered. It has long been studied in the context of graph
drawing. Purchase [36] found that perceptual symmetry re-
duces response times or errors in various ways. Eades and Lin
[12] proved that the solution of a “general spring model” can
uncover symmetries. This model is very general and includes
many energy models as special cases, including the full stress
model and Eades’ force model [11].

3 A MAXIMAL ENTROPY STRESS MODEL

The full stress model assumes that there are springs connecting
all vertex pairs of the graph, with the ideal spring lengths
defined as the graph-theoretical distances between vertices.
The energy of this spring system is given by formula (1),
where di j is the graph-theoretical distance between vertices i

and j, and wi j is a weight factor, typically 1/di j
2. A layout

that minimizes the stress energy is an optimal layout of the
graph according to this model.

As discussed in Section 1, the full stress model has high
computational cost because distances between all node pairs
must be calculated. We propose to fit only the given edge
lengths via a sparse stress model, and to resolve the remaining
degrees of freedom via maximization of the entropy of the
layout. We denote this entropy H(x). The model we propose
is:

max H(x)

subject to ‖xi− x j‖= di j, {i, j} ∈ S.
(3)

Here S is the set of vertex pairs that have predefined ideal
distances. Typically, S will be the same as E, but could be a
superset of E (e.g., the k-neighborhood graph).

This model may be infeasible because it is not usually
possible to satisfy all distance constraints simultaneously.
Therefore, as a compromise, we try to satisfy the constraints in
(3) by minimizing the sum of the distance errors (also known
as the sparse stress), while maximizing the entropy. In other
words, we wish to solve

min ∑
{i, j}∈S

wi j
(∥∥xi− x j

∥∥−di j
)2−αH(x). (4)

Here α ≥ 0 is a parameter, and wi j is a weighting factor. Large
values of α favor maximizing the entropy, while small values
put more emphasis on satisfying the ideal distances.

It remains to define more precisely the “entropy” of a layout.
There are notions of point set entropy in image processing and
graph entropy based on statistical attributes of nodes, but these
do not seem applicable. Instead, we rely on an analogy from
physics and consider nodes of a graph as objects in space.
To maximize entropy without any constraints, these objects
should be evenly dispersed, meaning that, on average, each
node should be as far from other nodes as possible. Since
some vertex pairs have a predefined ideal distance, we could
define the entropy as

H(x) = ∑
{i, j}/∈S

ln
∥∥xi− x j

∥∥ ,
which will push vertex pairs as far apart as possible when
maximized. Or, more generally, we can set

H(x) =−sgn(q) ∑
{i, j}/∈S

∥∥xi− x j
∥∥−q

, q >−2, (5)

where sgn(q) is the sign of real number q. We denote ‖x‖0 =
−ln‖x‖, and assumes that sgn(0) = 1. The reason we restrict q
to be greater than −2 is that if q <−2, the entropy term H(x)
will dominate the objective function in (4), and a layout that
minimizes (4) is one where all vertices spread out infinitely
away from each other. When q = −2, the same can happen
when wi j is small.
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3.1 Force-augmented stress majorization
Next we turn to showing how the maxent-stress model (4) can
be solved while avoiding the cost of the full stress model.

The minimum for (4) is achieved at a stationary point where
the gradient vanishes. Thus taking the derivative of the model
with respect to xi and setting it to zero gives

∑
{i, j}∈S

2wi j
(∥∥xi− x j

∥∥−di j
) xi− x j∥∥xi− x j

∥∥
−α sgn(q) ∑

{i, j}/∈S
q

xi− x j∥∥xi− x j
∥∥q+2 = 0,

or, simplifying by setting α ← αq/2,

∑
{i, j}∈S

wi j (xi− x j) = ∑
{i, j}∈S

wi jdi j(xi− x j)∥∥xi− x j
∥∥

+ α sgn(q) ∑
{i, j}/∈S

xi− x j∥∥xi− x j
∥∥q+2

(6)

In matrix form, this is

Lwx = Lw,d x+α b(x), (7)

where the weighted Laplacian matrix Lw has elements

(Lw)i j =

 ∑{i,l}∈S wil , if i = j
−wi j, if {i, j} ∈ S
0, otherwise

the Laplacian matrix Lw,d has elements

(
Lw,d

)
i j =

 ∑{i,l}∈S wil dil
/
‖xi− xl‖ , if i = j

−wi j di j
/∥∥xi− x j

∥∥ , if {i, j} ∈ S
0, otherwise

and the vector b(x) has elements

b(x)i = sgn(q) ∑
{i, j}/∈S

∥∥xi− x j
∥∥−q−1 xi− x j∥∥xi− x j

∥∥ . (8)

Because of (7), the maxent-stress model can be solved in a
way similar to stress majorization. This is akin to the Jacobi
method, where we use the layout to calculate the right hand
side of (7), then solve the linear system (7) with the known
right hand side. Notice that if α = 0, and S is the set of
all node pairs, this reduces exactly to the stress majorization
algorithm. Thus the difference in the proposed method for
solving the maxent-stress model is the term b(x). Notice that
when q ≥ 0, the term b(x)i, as defined in (8), is the sum of
the repulsive forces from other nodes acting on node i, with
the force proportional to 1/‖xi− x j‖q+1 along the direction
from x j to xi. When q < 0, the term b(x)i is the sum of the
attractive forces from other nodes acting on node i, with the
force proportional to 1/‖xi− x j‖q+1 along the direction from
xi to x j. For this reason we call this method force-augmented
stress majorization. The fact that the augmented term is a sum
of attractive forces when q< 0 also explains why the algorithm
tends to have a clustering effect in this case (Section 4.5).

An alternative way to solve the maxent-stress model is

xi←
1
ρi

∑
{i, j}∈S

wi j

(
x j +di j

xi− x j∥∥xi− x j
∥∥
)

+
α

ρi
sgn(q) ∑

{i, j}/∈S

xi− x j∥∥xi− x j
∥∥q+2

(9)

where ρi = ∑{i, j}∈S wi j. This simple iterative scheme, which
updates the layout node-by-node, is useful for large or dynamic
graphs where it would not be practical (or necessary) to solve
the linear system accurately.

4 NUMERICAL RESULTS

We implemented the proposed force-augmented stress ma-
jorization algorithm using PivotMDS for the initial layout.
Overall, the implementation is very similar to a stress ma-
jorization solver [15]. However several further implementation
details need to be resolved. First, the repulsive force term
(8) involves an almost all-pairs computation, which has the
O(|V |2) complexity that we wish to avoid. Second, we need
to choose α in a way that is not dependent on the types or
sizes of input graphs.

4.1 Repulsive force calculation
To reduce the complexity of the repulsive force calculation, we
employ a Barnes-Hut approximation [1], [38], [37] to compute
the repulsive forces (8) in O(|V | log |V |) time with good
accuracy. This treats groups of distant vertices as supernodes,
using a quadtree data structure (octree in 3D).

Because we approximate the repulsive forces, it may happen
that these forces do not sum to zero. This makes the linear
system (7) inconsistent because both Laplacians have a row
sum of zero. Hence, after the fast force approximation, we
normalize them to a sum of zero by adding a constant to the
right-hand side.

4.2 Selection of parameters
We use the conventional weighting factor of wi j = 1/d2

i j.
For the repulsive force calculation, based on experiments,
and following the implementation of sfdp (a multilevel force-
directed algorithm [20] based on the spring-electrical model,
available in Graphviz [16]), our implementation uses q = 0
except for a graph with many degree-1 nodes (more than
30%), where we set q = 0.8. The justification is that for such
graphs, a weaker repulsive force helps to avoid a “warping
effect” [21]. In the graphs tested, q = 0.8 only for btree and
1138_bus. An additional choice of q that resembles LMDS
is also investigated and discussed in Section 4.5.

We also need to set the value of α . Since the goal of solving
(4) is to satisfy the constraints in (3), we want α to be small.
On the other hand, if α is too low initially, then we are
essentially solving a conventional sparse stress model, with
its problems in handling non-rigid graphs. Therefore we start
with a relatively large α , and gradually reduce it. To make
sure that the repulsive force is properly scaled compared with
the first term in the right hand side of (6), we normalize the
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TABLE 1
Algorithms tested.

Algorithm Model Fits distances?
PivotMDS approx. strain model Yes/No

PivotMDS(k) PivotMDS + sparse stress Yes. k-hops
Maxent(k) PivotMDS + maxent-stress Yes. k-hops

sfdp spring-electrical No

GRIP stress on coarser levels, No
spring-electrical on finest level

FSM full stress model Yes. All-pairs

repulsive force vector b(x) so that it has the same norm as that
term. We experimented with several cooling schemes for α ,
and chose one that works well experimentally. Initially α = 1,
and we reduce it gradually with α← 0.3∗α in 5 steps, ending
with αmin = 0.008.

Also, we limit the number of force-augmented stress ma-
jorization steps to 50 per setting of α . Thus, in the worst
case, the maximum total number of stress majorization steps
is 250. We solve the linear system in (7) using the conjugate
gradient method, with a tolerance of 0.1 (relative residual), and
maximum number of iterations of 10, since we found that it is
not necessary to solve each of the intermediate linear systems
exactly. We terminate the maxent-stress algorithm when the
relative change in the layout, ||xl+1− xl ||/||xl ||, is less than
0.001, where xl is the 2|V |-dimensional vector of coordinates
for the 2D layout at iteration l of the stress majorization.

We implemented both PivotMDS and our force-augmented
stress majorization algorithm in C, compiled with gcc -O3.
The layout of PivotMDS is used as the initial layout for our
algorithm. All results are measured on one core of a 16 core
machine with Intel Xeon 2.13 GHz E5506 processors, and 12
GB of memory.

4.3 Experimental results
We tested the force-augmented stress majorization algorithm
for solving the maxent-stress model (hereafter denoted as
Maxent) on a range of graphs. For comparison, we also tested
PivotMDS, and PivotMDS with sparse stress majorization. We
use PivotMDS(k) to denote PivotMDS, followed by sparse
stress majorization on a graph consisting of the original edges,
plus edges between vertex pairs of k hops or less. The ideal
distance between a vertex pair is the length of the shortest path
between them. We define Maxent(k) similarly. Thus Maxent
is essentially Maxent(1). We also consider sfdp as well as
an implementation of the full stress model (FSM) that solves
(1) using stress majorization. Finally, we include the GRIP
multilevel algorithm. As GRIP does not really attempt to fit
distances, we used a version that assumes unit distances. We
summarize all the tested algorithms in Table 1.

With the exception of graph gd, which is an author col-
laboration graph of the International Symposium on Graph
Drawing between 1994-2007, the graphs used are from the
University of Florida Sparse Matrix Collection [9]. Our selec-
tion covers a range of graph sizes, and includes mesh-like and
other non-mesh graphs, and graphs from Brandes and Pich’s
experimental study of distance scaling [5]. Two of the graphs

TABLE 2
Test graphs. Graphs marked ∗ have pre-specified

non-unit edge lengths. Otherwise, unit edge length is
assumed.

Graph |V | |E| Description
gd 464 1311 Collaboration graph

btree 1023 1022 Binary tree
1138_bus 1138 1358 Power system
qh882 1764 3354 Quebec hydro power

lp_ship04l 2526 6380 Linear programming
USpowerGrid 4941 6594 US power grid
commanche∗ 7920 11880 Helicopter
bcsstk31 35586 572913 Automobile component

luxembourg∗ 114599 119666 Luxembourg street map

(commanche and luxembourg) have associated pre-defined
non-unit edge lengths. In our study, a rectangular matrix, or
one with an asymmetric pattern, is treated as a bipartite graph.
Test graph sizes are given in Table 2.

In the graph renderings, we use a red-to-green-to-blue color
scale to encode edge lengths from short to long. Edges shorter
than half of the median edge length are red, edges longer than
1.5 times the median are blue, and other edges are colored
according to the scale.

We summarize drawings for all graphs tested in Table 3.
Following Brandes and Pich [5], each drawing has an asso-
ciated error chart. In an error chart, the x-axis is the graph
distance, and ranges from smallest edge length to the diameter
of the graph. It is divided into 31 bins, less if the graph
diameter is smaller. The y-axis is the difference between
the actual geometric distance in the layout for all pairs of
vertices, and the graph distance. The chart shows the median
(black line), the 25th and 75th percentiles (gray band) and
the min/max errors (gray lines) that fall within each bin. For
ease of understanding, we plot graph distance against distance
error, instead of graph distance vs. actual distance as suggested
by Brandes and Pich [5]. Because generating the error chart
requires an all-pairs shortest paths calculation, we provide this
chart only for graphs < 10,000 nodes.

While lengths of the edges is the only information specified
in an input graph, and therefore it may appear that we should
only care about the first bins in an error chart, we note that
how well we place vertices that are not directly connected
to each other is vital to a good graph layout. The full stress
model, which attempts to places vertices so that the distance
between a pair of vertices in the layout is as close to their graph
distance as possible, has been found to give good layouts, even
though it has a high computational cost. The error chart gives
us a detailed view of how well the layout of other methods
approximate the graph distances.

In making the error charts, the layout is first scaled to
minimize the full stress, with wi j = 1/d2

i j. In other words, we
find a scalar s that minimizes

∑
i, j∈V

wi j
(
s
∥∥xi− x j

∥∥−di j
)2

for an existing layout x. This is done to be fair to methods
that do not try to fit layout distance to graph distance for
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all pairs of vertices; in addition it is necessary because sfdp
does not utilize edge length at all. With the error chart, we
include a graph distance distribution curve (red), representing
the number of vertex pairs in each graph distance bin. This
distribution depends on the graph, and is independent of the
drawing.

As an example, the error chart for PivotMDS on btree
(row 2, column 2) shows that, on average, the median line
is under the x-axis for small graph distances. This means
that the PivotMDS layout under-represents the graph distance
between vertex pairs that are a few hops away. This is because
it collapses branches of tree-like structures. The leaves of
such structures tend to be a few hops away, but are now
positioned very near to each other. To some extent the same
under-representation of graph distance for vertex pairs that
are a few hops away is seen for PivotMDS and PivotMDS(1)
on other non-rigid graphs, including 1138_bus, btree,
lp_ship041 and USpowerGrid. Compared with Pivot-
MDS and PivotMDS(1), the median line for Maxent (column
4) does not undershoot the x-axes as much.

As a side note, these error charts are helpful in under-
standing the characteristics of other algorithms as well. For
example, for most of the graphs, sfdp tends to under-represent
vertex pairs with a high graph distance, seen as a dip of the
median line past the x-axis for large x. This is likely due to
the warping effect [21] of the spring-electrical model, where
the length of edges in the layout are longer in the center of
the graph and shorter around the periphery. The error charts
for GRIP resemble those of sfdp in many cases (e.g., btree
and lp_ship041), presumably because GRIP applies the
Fruchterman-Reingold algorithm on the finest level.

In the following, we highlight drawings for a few graphs. In
Table 3, in the row for bcsstk31, we see that PivotMDS(1)
and Maxent give more or less the same layout, and both are
qualitatively not far from that of PivotMDS. This is expected
because many graphs with an underlying mesh structure have
a low intrinsic dimension, and PivotMDS alone can often give
a good layout. Inspecting the color of edges in the drawings,
we note that PivotMDS(1) and Maxent are dominated by green
edges, indicating that the specified edge length (in this case 1)
is largely respected. PivotMDS has more edge length variation.
For comparison, we see that sfdp produces a drawing with even
more edge length variation, seen as regions of blue for long
edges, and small regions of red for short edges.

Figure 1 shows layouts for the 1138_bus graph. For this
graph, PivotMDS collapsed many of the branches in the tree-
like structures. This is a known problem with algorithms
such as PivotMDS or high-dimensional embedding, for which
“hairs” in tree-like structures cannot be differentiated by
only considering distances from the k-centers. PivotMDS(1)
expands some of the branches, but still shows a collapsing
effect. Maxent expands these branches further, showing more
details. Both PivotMDS(1) and Maxent provide more consis-
tent target edge lengths, as indicated by the dominance of
green, compared with the sfdp layout.

Figure 2 shows layouts for the lp_ship04l graph. The
drawing by FSM, seen in Figure 2 (a), emphasizes 4 clusters
sparsely connected with each other. PivotMDS suffers from

(a) (b)

(c) (d)

Fig. 1. Drawings by (a) PivotMDS, (b) PivotMDS(1), (c)
Maxent and (d) sfdp, on the 1138_bus graph

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Drawings by (a) FSM, (b) PivotMDS (c) Pivot-
MDS(1), (d) PivotMDS(2), (e) Maxent and (f) Maxent(2)
on the lp_ship04l graph.

the same problem as with 1138_bus, where branches in the
tree-like structures are collapsed, leaving only a skeleton of
3 arms. PivotMDS(1) does not do much better. PivotMDS(2)
expands the clusters, because the ideal distance between nodes
of up to 2 hops are now specified. Nevertheless its drawing
overlaps two clusters with each other, because to separate these
would require specifying ideal distance of nodes many hops
away. Compared to the corresponding PivotMDS(k) drawings,
Maxent and Maxent(2) give better overall layouts of this graph.

So far, the graphs we have considered are without known
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TABLE 3
Drawings and error charts of algorithms. In an error chart, X is the target distance bin, Y is the difference between

layout distance and target distance. The chart shows median (black line), 25 and 75 percentile (gray band) and
min/max errors (gray lines), as well as error distribution (red line). A limit of 10 CPU-hours was imposed and “-”

denotes runs that did not finish within that time, or ran out of memory. In the drawings, a red-to-green-to-blue color
palette is used to encode edge lengths from short to long.

Graph PivotMDS PivotMDS(1) Maxent sfdp GRIP FSM

gd

btree

1138_bus

qh882
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TABLE 3
(continued) Drawings and error charts of algorithms. In an error chart, X is the target distance bin, Y is the difference
between layout distance and target distance. The chart shows median (black line), 25 and 75 percentile (gray band)
and min/max errors (gray lines), as well as error distribution (red line). A limit of 10 CPU-hours was imposed and “-”
denotes runs that did not finish within that time, or ran out of memory. In the drawings, a red-to-green-to-blue color

palette is used to encode edge lengths from short to long.

Graph PivotMDS PivotMDS(1) Maxent sfdp GRIP FSM

lp_ship04l

USpowerGrid

commanche

bcsstk31

-

Luxembourg

-
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Original graph (a), and drawings by (b) PivotMDS,
(c) PivotMDS(1), (d) PivotMDS(2), (e) Maxent and (f)
Maxent(2) on the commanche graph.

coordinates. Figure 3 (a) shows a graph, commanche, with
known coordinates, representing a helicopter. We can use
the coordinates to compute edge lengths and see how well
the graph can be regenerated. PivotMDS collapses the rotors
of the helicopter. Both PivotMDS(1) and PivotMDS(2) have
difficulty in separating the rotors. Maxent and Maxent(2) are
able to show a better overall structure, although PivotMDS(2)
gives more local details of the mesh.

Table 4 lists the CPU time used by these methods on
a range of graphs. Maxent(k) usually takes more time than
PivotMDS(k), because of its extra repulsive force calculation,
but it still scales to relatively large graphs. On the largest
graph, luxembourg, Maxent(k) is faster than PivotMDS(k),
although not as fast as sfdp, showing that there is still room for
improvement in the implementation of the force-augmented
maxent algorithm. Both sfdp and GRIP scale well to large
graphs. For comparison, we also include the CPU time for
FSM. Clearly CPU time for FSM increases very quickly with
graph size, and it does not scale to large graphs.

4.4 Further quantitative evaluations

While visually comparing drawings made by different algo-
rithms is informative, and may give an overall impression
of the characteristics of each algorithm, such inspection is
subjective. Ideally we would prefer to rely on a quantitative
measure of performance. However such a measure is not easy
to devise. For example, if we use sparse stress as our measure,
PivotMDS(k), that minimizes sparse stress, is likely to come
out best, despite its shortcomings. In the following, we attempt
to measure layout quality using three quantitative measures:
full stress, neighborhood inconsistency, and precision of neigh-
borhood preservation. The latter two measures compare the
neighborhood structure in layout space with that in the original
graph space.

4.4.1 Measuring full stress
One imperfect measure of quality is full stress, as defined by
(1), with wi j = 1/d2

i j. This measures how the embedding fits
the graph theoretical distances. Notice that with wi j = 1/d2

i j
the full stress (1) can be written as

∑
i, j∈V

(∥∥xi− x j
∥∥/di j−1

)2. (10)

Therefore, the full stress is a measure of how the ratio between
Euclidean and graph theoretical distances deviate from 1.
Note that this penalizes the case when

∥∥xi− x j
∥∥� di j, but

under-penalizes the case when
∥∥xi− x j

∥∥� di j (because the
most a

∥∥xi− x j
∥∥ = 0 term can contribute to the stress is

1). Furthermore, this measure naturally favors the full stress
model based algorithm FSM.

Table 5 gives the full stress measure achieved by each
algorithm. In addition it gives a score for each method (last
row, smaller is better), defined as the average ratio between
the full stress and the smallest stress. Because it is expensive
to calculate all-pairs shortest paths, we restrict experimental
measurement to graphs with fewer than 10,000 nodes. From
the table we can see that, as expected, FSM is the best, because
it tries to optimize this measure. PivotMDS and sfdp end up
with higher full stress. As expected, sfdp yield high full stress
on commanche, because it assumes unit edge length on a
non-unit edge length input graph. Surprisingly, GRIP gives
the second smallest full stress among all algorithms.

Maxent often gives lower full stress than PivotMDS(1), al-
though it is not clear why Maxent(2) tends to gives higher full
stress than Maxent. For example, on commanche, Maxent(2)
gives full stress that is almost 60% higher than Maxent, but the
drawing given by Maxent(2) (Figure 3 (f)) does not seem any
worse than that of Maxent (Figure 3 (e)). We conjecture that
because we use the maximal entropy principle to deal with
the extra degrees of freedom, the edge length information is
all it takes for Maxent to work well, and it is not necessary
to have additional information for pairs of vertices that do
not form edges. On the other hand, PivotMDS clearly benefits
from such extra information.

4.4.2 Measuring neighborhood inconsistency
Often, in embedding high dimensional data into a lower
dimension, one is interested in preserving the neighborhood
structure. In such a situation, replicating the distance between
objects becomes a secondary concern.

As an example, imagine a graph where each node is a
movie. Based on some recommender algorithm, an edge is
added between two movies if the algorithm predicts that a
user who likes one movie would also like the other, with
the length of the edge defined as the distance (dissimilarity)
between the two movies. The graph is sparse because only
movies that are strongly similar are connected by an edge. For
a visualization of this data to be helpful, we need to embed
this graph in 2D in such a way that, for each node (movie),
nodes in its neighborhood in the layout are very likely to be
similar to this node. This would allow the user to explore
movies that are more likely of interest to her by examining, in
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TABLE 4
CPU time (in seconds) for PivotMDS, PivotMDS(1), PivotMDS(2), Maxent, Maxent(2), sfdp and FSM. A limit of 10
CPU-hours is imposed and “-” is used to denote runs that could not finish within that time, or ran out of memory.

Graph PivotMDS PivotMDS(1) PivotMDS(2) Maxent Maxent(2) sfdp GRIP FSM
gd 0.3 0.3 0.5 0.8 1.1 0.2 0.1 2.3

btree 1.1 1.1 1.2 2.7 2.1 1 0.1 10
1138_bus 0.1 0.19 0.3 2.1 1.4 1.2 0.2 16
qh882 0.1 0.3 0.5 2.2 2.4 0.9 0.2 39

lp_ship04l 0.1 0.1 2.2 2.2 8.2 2.0 0.2 58
USpowerGrid 0.1 0.9 1.4 6.5 6.4 3.7 0.4 272
commanche 0.2 0.9 5.0 9.0 10.5 5.6 0.7 1025
bcsstk31 2.4 21.6 71.0 102 258 23.8 22 -

luxembourg 2.4 630 806 209 266 78.7 66.9 -

TABLE 5
Full stress measure for PivotMDS, PivotMDS(1), PivotMDS(2), Maxent, Maxent(2), sfdp and FSM. The last row gives
the average ratio over the best, defined as the stress divided by the smallest stress for all methods, averaged over 7

graphs. Smaller is better.

Graph PivotMDS PivotMDS(1) PivotMDS(2) Maxent Maxent(2) sfdp GRIP FSM
gd 19384 15073 15506 12327 13011 12752 11051 9734

btree 130190 109713 74946 63524 70260 75518 82341 60226
1138_bus 77834 64630 56368 44797 50533 56225 51668 40030
qh882 147114 119615 125694 102654 104139 125999 105382 84477

lp_ship04l 666532 769495 436130 363024 469808 632422 458384 250707
USpowerGrid 1123582 932395 892356 1017798 923927 1156193 1038001 701831
commanche 2305010 1547432 1203406 1545418 2464612 3690581 967418 653869

avg. ratio/best 2.23 1.88 1.51 1.41 1.71 2.18 1.40 1

the visualization, the neighborhoods of the movies she knew
and liked.

Because the recommender algorithm may not be accurate,
even if two movies are not directly connected, there is still
a probability that they are similar, except that the probability
diminishes if they are many hops away. Therefore, for each
movie, we have a probability distribution where every other
movie is given a probability of being similar to it. In the
embedding space, we can also define a probability distribution
based on how far other movies are from this movie, in
Euclidean distance. An optimal embedding is one that matches
these two distributions as closely as possible. This approach
was first proposed by Hinton and Roweis [19], and is described
formally as follows.

In the graph space, we define the probability that vertex j
is similar to vertex i as

pi j = e−
d2
i j

σi , j 6= i. (11)

Here we take di j to be the graph-theoretical distance between
the two nodes, and σi is a scaling parameter dictating how
quickly the probability decays with the distance. The proba-
bility is further normalized so that ∑ j: j 6=i pi j = 1.

In the embedding space, in a similar fashion, we define the
probability that vertex j is a neighbor of vertex i as

qi j = e−
‖xi−x j‖2

σi , j 6= i. (12)

A good embedding should make these two probability
distributions match as closely as possible. The difference

between these two distributions can be measured using the fol-
lowing symmetrized Kullback-Leibler (KL) divergence. (Note
that Hinton and Roweis [19] originally proposed using the
asymmetric version of the KL divergence, but subsequent work
[31], [39] used the symmetrized version.)

NI = 0.5∑
i

∑
j

(
pi j log

(
pi j

qi j

)
+qi j log

(
qi j

pi j

))
(13)

We call this quantity the neighborhood inconsistency (NI).
The smaller the value, the better the embedding matches the
original data in terms of neighborhood structure. We give
the NI measure of the algorithms for graphs with less than
10,000 nodes in Table 6. The scaling parameter σi has to
be chosen carefully. If it is set too small, then larger values
of di j would make (11) negligible, therefore the NI measure
would effectively only consider a few closest neighbors. On
the other hand, a tiny value of σi would make far away
neighbors equally important as close neighbors. If we assume
a simple case of K closest neighbors of being similar to i
with equal probability 1/K, and the rest with probability zero,
then the entropy for the distribution {pi j| j : j 6= i} is log(K).
Therefore we choose σi so that the entropy of the probability
distribution equals logK. Here K is known as the perplexity,
or the effective number of local neighbors. Following Hinton
and Roweis [19], who use K in the range of 10−25, we set
K = 20.

For ease of comparison, in the last row of Table 6 we also
give a score for each method (smaller is better), defined as
the ratio between the NI for the method on a graph, and the
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TABLE 6
Neighborhood inconsistency (NI) for PivotMDS, PivotMDS(1), PivotMDS(2), Maxent, sfdp and FSM. The last row

gives the average ratio over the best, defined as the NI of a method divided by the smallest NI for all methods,
averaged over 7 graphs. Smaller is better.

Graph PivotMDS PivotMDS(1) PivotMDS(2) Maxent sfdp GRIP FSM
gd 2627 2108 2676 2227 2137 2441 2655

btree 4816 4795 5585 4083 3096 5209 9663
1138_bus 4879 5246 5952 3786 2988 4222 3536
qh882 8813 10186 13238 8499 5856 7608 6538

lp_ship04l 17600 39734 38554 16944 17374 28589 18597
USpowerGrid 31511 37778 46249 32721 21912 43236 33190
commanche 210131 200682 189179 148337 132389 126402 134316

avg. ratio/best 1.44 1.67 1.89 1.25 1.01 1.46 1.48

smallest NI over all methods for that graph, averaged over all
graphs. From Table 6, we can see that PivotMDS sometimes
has smaller NI than PivotMDS(1), probably because NI is an
objective function that, to some extent, characterizes how well
the embedding depicts the cluster structure of the data, and
is used in the field of machine learning for the purpose of
visual classification. Often, eigenvector-based layout methods,
such as PivotMDS, without further refinement, characterize
the cluster structures well, but with a lack of details (multiple
vertices may be placed at the same location). According to NI,
Maxent is generally better than PivotMDS and PivotMDS(1),
and comparable to FSM and GRIP. Surprisingly, sfdp has
the smallest or the second smallest NI measures. Again, we
hypothesize that sfdp performs well due to the fact that similar
force-directed algorithms tend to show cluster structures well
[33].

4.4.3 Measuring Precision of Neighborhood Preserva-
tion
While the NI measure (13) is computationally simple and gives
us a single number for comparing neighborhood inconsistency,
it is not easy to interpret intuitively. To help us to understand
and validate NI, in the following we look at the precision of
neighborhood preservation, a more concrete measure.

We are interested in answering the question: if we see
vertices nearby in the embedding, how many of these are
actually also neighbors in the graph space? We define the
precision of neighborhood preservation as follows. For each
vertex i, K neighboring vertices of i in the layout are chosen.
These K vertices are then checked to see if their graph distance
is less than a threshold d(K), where d(K) is the distance of
the K-th closest vertex to i in the graph space. The percentage
of the K vertices that are within the threshold, averaged over
all vertices i, is taken as the precision. Note that precision
(the fraction of retrieved instances that are relevant) is a well
known concept in information retrieval. Chen and Buja [7] use
a similar concept called LC meta-criteria.

Figure 4 gives the precision as a function of K. From
the figure, it is seen that, in general, sfdp has the highest,
or nearly the highest precision, except for lp_ship04l.
This is consistent with our findings when using NI as a
measure of neighborhood quality. PivotMDS(1) tends to have
low precision. The precision of other algorithms, including
Maxent, tends to be between these two extremes. One outlier is

lp_ship04l. For this case, PivotMDS(1) has high precision.
In light of the drawing of this graph in Figure 2, this may be
related to the fact that the drawing by PivotMDS(1), like that
of PivotMDS, collapses the clusters.

FSM has low precision for btree. We believe this can
be explained when looking at the drawings for btree in
Figure 3. The FSM drawing utilizes space well, but each leaf
i of the tree tends to be very close to the leaves of other
branches. These leaves have a high graph distance to i, making
the precision lower. This is the result of FSM under-penalizing
the under-prediction of large graph distances, as discussed
before.

Overall, neighborhood inconsistency and precision of neigh-
borhood preservation are two quantitative ways in which to
gauge aspects of the algorithms not well captured by the
full stress objective function. We believe they offer useful
and complementary measures of layout quality for distance-
based embedding. Based on these, and the full stress objective
function, Maxent is found to offer a compromise between
distance preservation and neighborhood preservation, with the
advantages of being more scalable than the full stress model,
and of giving better drawings and neighborhood preservation
than PivotMDS(k) for non-rigid graphs.

4.5 The effect of the q parameter
As explained in Section 4.2, in our implementation we use
q = 0 except for graphs with many degree-1 nodes, where we
set q = 0.8. We note that if q =−1, the entropy function (5)
becomes

H(x) = ∑
{i, j}/∈S

∥∥xi− x j
∥∥ , (14)

and the repulsive force equation (8) becomes

b(x)i = ∑
{i, j}/∈S

xi− x j∥∥xi− x j
∥∥ . (15)

With (14), our energy model (4) is essentially the same as
LMDS of Chen and Buja [7] (equation (2)), except that our
solution procedure calls for annealing α gradually to zero,
instead of a fixed α . In addition, we can still utilize the Barnes-
Hut approximation to efficiently compute the sum of the unit
vectors in (15). Because of this resemblance to LMDS, we
are interested to see whether this choice of q gives us a good
graph drawing algorithm.
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Fig. 4. Precision of neighborhood preservation of the algorithms, as a function of K. For each vertex i, K-nearest
neighbors of vertex i in the layout is chosen. These K vertices are then checked to see if their graph distance is
less than a threshold d(K), where d(K) is the graph distance of the K-th closest vertex to i in the graph space. The
percentage of the K vertices that are within the threshold, averaged over all vertices i, is taken as the precision. The
higher the precision, the better.
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We call the algorithm that corresponds to q = −1
Maxent(1,−1). Figure 5 gives the drawing for some graphs
using Maxent(1,−1). It seems that because of the stronger
repulsive forces in (15) that do not decay with the distance,
nodes can cling to each other, and Maxent(1,−1) gives draw-
ings that resemble those of PivotMDS and PivotMDS(k). For
example, its drawing of the btree makes the branches stay
close to each other, just like the drawings by PivotMDS and
PivotMDS(k) in Figure 3. This strong clustering effect may be
desirable for the purpose of classification in machine learning
applications, but makes it harder to differentiate nodes and
edges for the purpose of graph visualization. In general, we
found that a smaller q value (e.g., q < 0) increases clustering
effect at the expense of local details. A very larger q values
(e.g., q� 0) increases fitting of distances along edges, at the
expense of obfuscating global structure.

btree 1138_bus

lp_ship04l commanche

Fig. 5. Drawings by Maxent(1,−1).

5 DISCUSSION AND CONCLUSIONS
This paper proposed the maxent-stress model for graph embed-
ding, with the objective of satisfying input edge lengths, while
resolving the remaining degrees of freedom with the principle
of maximal entropy. The proposed method does not require
an all-pairs shortest path calculation, as needed by the full
stress model, and is therefore more scalable. Compared with
other scalable stress models such as PivotMDS, the proposed
method also does not degrade as much on non-rigid graphs.

We introduced the concepts of neighborhood inconsistency
and precision of neighborhood preservation to gauge aspects
of the algorithms not well captured by the full stress. We
believe these are useful additional measures of layout quality

for distance-based embedding. Based on these measures, the
maxent-stress model is found to offer a compromise between
distance preservation and neighborhood preservation.

The maxent-stress model incorporates a parameter α that
controls the strength of the repulsive forces. During iterative
solution, this parameter should gradually be reduced toward
zero. We proposed a scheme to reduce it geometrically. We
are still experimenting with refinements to this schedule. It is
also not clear how to analyze the convergence of the maxent-
stress algorithm. Ideally, we would like to solve the true
maximum entropy model (3) by making distance satisfaction
the top priority, even though (3) contains constraints that may
be infeasible.

While we applied the force-augmented stress majorization
algorithm proposed in this paper to solve the maxent-stress
model, another potential way to solve the model is using a
variant of a pure force-directed algorithm (9).

Embedding high dimensional data to fit known distances
has potential applications not only in graph drawing, but also
in machine learning. We would like to investigate the use of
the proposed model in such problems, and compare it with
established approaches such as LLE and Isomap.
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