Comparing the performance of JAVA with Fortran
and C for numerical computing *

Y. F. Hu', R. J. Allan! and K. C. F. Maguire?
!Daresbury Laboratory, CLRC, Daresbury,
Warrington WA4 4AD, United Kingdom
2European Southern Observatory
Karl-Schwarzschild-Strasse 2
D-85748 Garching bei Muenchen
Germany

August 16, 2000

Abstract

The performance of Java has been compared with that of Fortran 90
and C on two benchmarks of particular interest to scientific and engi-
neering applications. It was found that in comparison with F90 and
C, the I/O and compute performance of Java varies from 30% slower
to about 3 times slower, depending on the platforms and the compil-
ers (and the Java Virtual Machines). The best relative performance is
achieved on a Pentium II, where it was found that the IBM Java yields
code that is about 30-40% slower in computing and I/O performance.

1 Introduction

Java is now widely recognized as a good object-oriented language for writing
portable programs quickly. However, its penetration to computationally
intensive numerical calculation is still low. One of the main reasons is its
poor performance, or the perception of it, for such numerically intensive
computing.

However, Java, as a programming language that is supposed to be “writ-
ten once and run everywhere”, is very attractive for scientific and engineering

*This report and the sparse matrix multiplication benchmark is also available at
http://www.dl.ac.uk/TCSC/Staff/Hu_Y_F/JASPA

calculations that involve many researchers using different platforms. With
Java’s strong connections to Internet technology, the potential of running
applications over the Internet, either for server/client side computing, or in
terms of using computing resources over the Internet as a Computational
Grid, is enormous.

That Java can suffer from performance problems is perhaps not at all
surprising. Java is not designed for numerical computing, rather, it is a truly
object oriented language which aims to achieve bit-for-bit reproducibility of
results on different platforms, safety of execution, and ease of programming
and testing. As a result, everything apart from very primitive types is
an object, with the associated overhead of handling objects. Furthermore,
access to array elements is subject to expensive bound checking and null
pointer checking. Array objects are also not assumed to occupy a contiguous
section of the memory, which is bad for optimal cache usage. Besides, Java is
not allowed to take advantage of some special features of hardware, such as
the fused multiply-add instruction found on the IBM POWER architecture.

In addition to the above, compiler technology takes time to mature.
Compared with Fortran and C, Java, is still relatively new. Java also differs
from C and Fortran in that Java codes are first compiled into bytecodes,
and then interpreted on any platform using a Java Virtual Machine (JVM).
This is similar to what other interpreted languages do, such as Basic and
Perl. Java is therefore optimized at run time, rather than at compile time.

There are however already major advances in the Java compiler technol-
ogy. One of these technologies is the JIT (Just-In-Time) compiler. When a
JIT is present, the Java Virtual Machine hands the bytecodes to JIT, which
in turn compiles them into native code for the platform, and runs the result-
ing executables. The JIT is an integral part of the Java Virtual Machine,
and is transparent to the users. Since Java is a dynamic language, the JIT
is really “just-in-time”, and compiles methods on a method by method ba-
sis just before they are called. There has also been effort in reducing the
amount of array bound check through some clever transformations of code
[1].

Not long ago, Java could only achieve say 20% of the performance of
Fortran on a good day. With the introduction of new compiler technologies
such as JIT and HotSpot (http://developer.java.sun.com/developer/
technicalArticles/Networking/HotSpot/index.html), there have been
an increasing number of reports of Java compilers giving applications with
comparable performance to statically compiled languages such as C (e.g.,
2]).

It is therefore our intention in this report to have a close look at the

Java performance issue as it stands today, and compare it with Fortran 90
(F90) and C on benchmarks that are important for scientific and engineering
applications. This is of course a task that is impossible to achieve fully giv-
en the varying kernels dominating different applications. These may range
from dense matrix calculations, to sparse matrix operations, to the solu-
tion of eigenvalue problems, or even repeated evaluations of elementary or
special functions. We therefore decided to restrict our comparison to two
benchmarks.

For our first study, we compare the performance of JAVA with C and F90
for sparse matrix based calculations. Sparse matrices appear frequently in
large-scale scientific and engineering applications and the ability of JAVA to
handle such sparse systems efficiently is of vital importance to the usefulness
of this language for these applications. Our sparse benchmark compares the
three languages in terms of the speed for sparse matrix multiplications. I/O
speed is also tested.

For our second study, we measure the performance of JAVA against C us-
ing the SciMark2 benchmark (http://math.nist.gov/scimark2/), which
contains a variety of applications including FFT, dense LU factorization,
and sparse matrix vector products.

It is worth noting that since Java 2 (version 1.2 onwards), there are two
floating-point modes — strictfp and default. The strictfp mode, which
applies to classes or methods with the strictfp keyword, corresponds to
the original (Java 1) floating-point semantics. Although this mode enforces
bit-for-bit reproducibility of results across JVMs, it could lead to severe per-
formance deterioration when implemented on Intel Pentium like processors.
The registers of these processors operate using IEEE 754’s 80-bit double-
extended format, therefore under the strictfp mode, both the fractional
part and the exponent part have to be truncated to IEEE 754 64-bit double
format at a great cost. For performance consideration, the default mode
was therefore not strictfp anymore. All the benchmarks in this report are
run under the default mode, although as far as the authors understand, no
JVM has implemented strictfp mode yet.

2 The Test Platforms

The experiments were carried out on the following systems

e 3 dual processor Pentium II with 266 MHz CPU and 256 MB RAM,
running Linux (Red Hat 6.0)

Table 1: Compilers used

name note version flags
Pentium II

abf90 Absoft F90 compiler 1.01 -0
pefI0 Portland group F90 compiler 3.0-3 -04
gee GNU C compiler 2.95.1 -05
Java (IBM) IBM JDK 1.3.0 -0
Java (Sun) Sun JDK 1.3.0 (beta) -0

Sun Untra 80
90 Sun WorkShop F90 compiler 2.0 -fast
cc Sun WorkShop C compiler 5.0 -fast
Java Sun 1.3.0 (beta) -0

IBM Power3
90 XL Fortran compiler for AIX 7.1.0.0 -03 -qarch=pwr3 -qtune=pwr3
cc C for AIX Compiler 4.4.0.0 -03 -gqarch=pwr3 -qtune=pwr3
Java Java RTE 1.1.8 -0

e a Sun Ultra 80 with 450 MHz CPU and 2GB RAM, running Solaris 2.6

e an IBM Power3 with 375 MHZ CPU (1.5 Gflops peak) and 1GB RAM,
running AIX 4.3.3.0.

The compilers and compilation flags are listed in Table 1.

3 The Sparse Matrix Benchmark

In our first study the benchmark we choose is a simple yet important opera-
tion: that of multiplying two sparse matrices. This operation appears when
forming the normal equations of interior point methods for large scale nu-
merical optimization. It also appears, either explicitly or implicitly, in very
large scale unstructured calculations where a multilevel/multigrid scheme
is used. For example, in the algebraic multilevel algorithm for large sparse
linear systems, the matrix on a coarse grid, A., is derived from the matrix
on the fine grid, Ay, using the following Galerkin product:

4

where P is the prolongation operator. This is usually one of the most time
consuming parts of an algebraic multigrid algorithm. Although in practice
the multiplication of the three matrices in (1) is performed in one step,
rather than performed twice as a product of two matrices, in this study we
only look at the product of two matrices.

Our benchmark (known as JASPA (JAva SPArse benchmark), avail-
able at http://www.dl.ac.uk/TCSC/Staff/Hu_Y_F/JASPA) therefore has
two simple steps:

e read in the matrix A from a file

e multiply the matrix A by itself and store in matrix B (B = A x A)

3.1 Test problems

The test matrices are download from the MatrixMarket (http://math.
nist.gov/MatrixMarket). These are square matrices of size ranging from
2534 to 94069. These matrices are in the MatrixMarket coordinate format.
For example, for the following 5 x 5 sparse matrix with 8 nonzero entries,

1 0 0 6 0
0 105 0 0 0

0 0 015 0 0 (2)
0 2505 0 —280 33.32

o 0 0 0 12

is stored in the MatrixMarket coordinate as

%kMatrixMarket matrix coordinate real general

5 5 8
1 1 1.000e+00
2 2 1.050e+01
3 3 1.500e-02
1 4 6.000e+00
4 2 2.505e+02
4 4 -2.800e+02
4 5 3.332e+01
5 5 1.200e+01

Because matrices from MatrixMarket may contain sparse patterns with-
out any entry values, for simplicity all matrix files have been converted to a
form with only the sparse pattern. Thus for example the above matrix will
be in the form

o0

AR DD R W RO
AR WN R

All the matrix entries are set to one after reading in the sparse pattern.

3.2 1I/O considerations

Reading in a matrix in F90 and C is simple. Here is the F90 code fragment

! read in the row, column sizes and number of nonzeros
read(input_unit,*) n,m,nz
allocate(irn(nz), jen(nz))

! read in the row and column indices (sparse pattern)
do i=1, nz

read (input_unit,*) irn(i),jcn(i)
end do

and here is the C code fragment

/* read in the row and columb sizes
and the number of nonzeros */
fscanf (fp,"%d %d %d",&n, &m, &nz) ;

/* read in the matrix */
irn = (int*) malloc((nz)*sizeof (int));
jen = (int*) malloc((nz)*sizeof (int));
for (i = 0; i < nz; i++) {

fscanf (fp,"%d %d",&irn[i],&jcnli]);
}

However the JAVA code for input needs more attention because there is more
than one way of writing a JAVA code for reading from the ASCII matrix
files, with quite different performances. Initially we tried the readLine
method of the BufferReader class, which processes the matrix file one line

at a time. The line is then turned into integers by the String2int method.
When tested on a dual processors Pentium II running Linux and the Sun
JAVA compiler version 1.2.2, this approach was found to be up to 30 times
slower than C. After some trial and error, the following approach was finally
adopted instead:

//open the matrix file

FileInputStream is = new FileInputStream(MatrixFileName) ;
BufferedReader bis = new BufferedReader (new InputStreamReader(is));
StreamTokenizer st = new StreamTokenizer (bis);

//read in the row and column sizes

st.nextToken(); int n = (int) st.nval;
st.nextToken(); int m = (int) st.nval;
st.nextToken(); int nz = (int) st.nval;

new int[nz];
new int[nz];

int[] irn
int[] jcn

for (int j = 0; j < nz; j++) {
st .nextToken() ;
irn[j] = (int) st.nval;
st .nextToken() ;
jen[j]l = (int) st.nval;

In this approach the whole file is read in as an InputStream and buffered,
it is then tokenized to extract the sparse patterns. Using a Buf fered Reader
is very important since unbuffered I/O can be very slow.

3.3 The Computational Kernel

Once the matrix is read in, it is converted into the internal data structure.
Here the popular compacted sparse row format for storing sparse matrices
is used. This comprises two integer arrays ia, ja and one double precision
array a, where ¢a is of dimension n 4+ 1 and points to the start of each row
in the arrays ja and a. The array ja is of dimension nz and contains the
column indices, while a is also of dimension nz and contains the matrix
entries.

The main kernel in the computational part of the benchmark is the
code for the product of two matrices. In F90 this is of the following form,

where the product C = A * B is calculated. Each matrix is represented in
the compacted sparse row format; for example, matrix A is represented by
arrays ta, ja, a, matrix B by arrays b, jb, b, and product matrix C' by arrays
ic, jc, cC.

subroutine spmatmul(n,m,ia,ja,a,ib,jb,b,ic,jc,c)
I C = A*B

integer (kind = myint), intent (in) :: n,m

integer (kind = myint), intent (in) :: ia(*),ib(*),ja(*),jb(*)
integer (kind = myint), intent (out) :: ic(*),jc(*)

real (kind = myreal), intent (in) :: a(*),b(*)

real (kind = myreal), intent (out) :: c(*)

integer (kind = myint) :: mask(m),nz,i,j,k,icol,icol_add,neigh
real (kind = myreal) :: aij

! initialise the mask array which is an array that has
! non-zero value if the column index already exist, in which
! case the value is the index of that column

mask = 0
nz =0
ic(1) =1
do i=1,n
do j = ia(i),ia(i+1)-1
aij = a(j)

neigh = ja(j)
do k = ib(neigh),ib(neigh+1)-1
icol_add = jb(k)
icol = mask(icol_add)
if (icol == 0) then
nz =nz + 1
jc(nz) = icol_add
c(nz) = aij*b(k)

mask(icol_add) = nz ! add mask
else
c(icol) = c(icol) + aij*b(k)
end if
end do

end do
mask(jc(ic(i):nz)) = 0
ic(i+1) = nz+1

end do

end subroutine spmatmul

The main characteristic of the above computation is that although the
arrays (ia, ja,a) are accessed sequentially, the arrays (ib, jb, b) and (ic, jc, ¢)
may be accessed randomly through indirect addressing.

In Java, the kernel looks very similar:

static void spmatmul_double(
int n, int m,
double[] a, int[] ia,int[] ja,
double[] b, int[] ib,int[] jb,
double[] c, int[] ic,int[] jc)

int nz;

int i,j,k,1,icol,icol_add;
double aij;

int neighbour;

// extra space for FORTRAN like array indexing
int[] mask = new int[m+1];

// starting from one for FORTRAN like array index
for (1 = 1; 1 <= m; 1++) mask[1l] = O;

ic[0] = 1;
nz = 0;

// starting from one for FORTRAN like array indexing
for (i = 1; i <= n; i++) {
for (j = ialil; j < iali+1]; j++){
neighbour = jal[jl;
aij = aljl;
for (k = ib[neighbour]; k < ib[neighbour+1]; k++){
icol_add = jb[k];
icol = mask[icol_add];
if (icol == 0) {
jc[++nz] = icol_add;
c[nz] = aij*bl[k];
mask[icol_add] = nz;

}

else {
clicol]l += aij*bl[k];

}
}
for (j = iclil; j < nz + 1; j++) mask[jc[jl] = O;
ic[i+1] = nz+1;

Notice that because the matrix is stored such that the row and column
entries always start from 1, in Java each array will be given one extra element
so that the array addressing can start from 1. In C however it is possible to
utilize the flexibility of pointer manipulation to avoid this extra element, as
the following C code shows.

void spmatmul_double(
const int* n, const int* m,
const double *a, const int *ia,const int *ja,
const double *b, const int *ib,const int *jb,
double *c, int *ic,int *jc,
const int* ind_base)

int nz;

int i,j,k,icol,icol_add;
const double *aij;

const int *neighbour;
int *mask, *pmask;

mask = (int*) malloc((*m) * sizeof(int));
pmask = mask;

for (i = 0; i != *m; i++) *pmask++ = O;
/* shift the index base for fortran like indexing: *ind_base=1 */
ib -= *ind_base;

jb —= *ind_base;
b -= *ind_base;
jc —-= *ind_base;
¢ -= *ind_base;

10

mask —-= *ind_base;

aij = a;

neighbour = ja;

nz = —-1+*ind_base;

*¥ic = 1;

for (i = 0; i != *n; i++) {

for (j = ialil; j != iali+1]; j++){
for (k = ib[*neighbour];k != ib[*neighbour+1] ;k++){
icol_add = jb[k];
icol = mask[icol_add];
if (icol == 0)
{
jc[++nz] = icol_add;
clnz] = (*aij)*blk];
mask[icol_add] = nz;

clicol]l += (*aij)x*bl[k];
}

}

aij++;

neighbour++;

}

for (j = *ic; j != nz + 1; j++) mask[jc[jl]l = 0;
*(++ic) = nz+l;

}
mask += *ind_base;
free(mask) ;

3.4 Performance for sparse matrix multiplication

Table 2 shows the I/O performance of Java compared with F90 and C on
the three platforms. In this table and Table 3, the timing for the F90 (in
the case of the Pentium it is the Absoft F90) is used as a benchmark. The
timings for other compilers are divided by the timings for the F90 compiler,

11

and averaged to give a score in the last row of the tables. With this measure,
the F90 compiler always comes out with a score of 1. The lower the score,
the better the algorithm.

On the Pentium system, the I/O performance of both versions of Java
are about 25-40% worse than C, but are about three times better than the
Absoft F90! The disappointing I/O performance of the Absoft compiler is
however not inherent to F90. Using the Portland Group F90 compiler, the
I/O performance is close to that of C. However, as we will see later, the
computing performance of the Portland Group F90 compiler is rather dis-
appointing. This was known from an earlier experience [3]. I/O performance
of Java (Sun) is slightly (about 10%) better than that of Java (IBM).

On the Sun Ultra 80, it is surprising that the I/O of the C version is 70%
slower than F90, while the Java took 3.5 times the I/O time of the F90.

On the IBM Power3, the F90 I/O took the least time, followed by Java
and C, which are both about 60-75% slower.

One annoying feature of Java is that all Java Virtual Machines assume
a certain fixed heap size (this being 30 MB on the IBM platform in our ex-
periment), and for large problems one has to specify the amount of memory
needed explicitly using a flag -mx<size>, which can be inconvenient since in
our experiments we do not know in advance the amount of memory needed.

The compute performance for the sparse matrix multiplications is com-
pared in Table 3. On the Pentium platform, the Absoft F90 compiler per-
formed the best. It is interesting that the C version of the matrix multiplica-
tion performed just as well. The Java (IBM) version runs about 27% slower.
The big disappointment is the Portland F90, which needed 75% more time
(this is reduced to about 67% on another Linux system which has the newer
3.1-3 version of Portland F90)! Java (Sun) is around 35% slower than Java
(IBM), and 70% slower than the Absoft F90.

On the Sun Ultra 80, the F90 and C versions have almost the same
performance, but the Java version does not perform well at all, requiring on
average 2.4 times the CPU time!

On the IBM Power3, the C version is 30% slower than the F90 version.
The Java version is about 2.9 times slower! Note however from Table 1 that
the Java compiler used is version 1.1.8, rather than the latest version 1.3
(beta). This is because the IBM Power3 used in this experiment runs under
AIX 4.3.3.0. To install the Java version 1.3 (beta) would require an oper-
ating system upgrade to or above AIX 4.3.3.10, which we were unable to
obtain permission to do. We would expect that with a newer Java compil-
er and JVM, the gap of computing performance may be closer. It is also
worth noting that prior to benchmarking on the Power3 platform, we have

12

Table 2: Comparing the I/O performance (in seconds) of Java with F90 and
C for reading in sparse matrices in MatrixMarket coordinate form as ASCII

files.
Pentium II
matrices n nz abfo0 pgfI0 gce Java (IBM) Java (Sun)
af23560.mtx 23560 484256 13.779 4.426 3.490 4.821 4.441
besstk30.mtx 28924 1036208 29.921 9.564 7.530 9.445 9.336
e40r0000.mtx 17281 553956 15.200 5.037 3.930 5.278 4.913
fidap0ll.mtx 16614 1091362 30.345 9.787 7.720 10.673 10.090
fidapmll.mtx 22294 623554 20.024 5.678 4.470 5.898 5.641
memplus.mtx 17758 126150 3.745 1.096 0.880 1.840 1.112
qc2534. mtx 2534 463360 13.360 3.891 3.110 3.766 3.697
s3dkt3m2.mtx 90449 1921955 62.245 18.034 14.180 18.549 18.061
score 1.000 0.306 0.242 0.341 0.304
Sun Ultra 80
matrices n nz F90 C Java
af23560.mtx 23560 484256 0.989 1.720 3.560
besstk30.mtx 28924 1036208 2.044 3.720 7.672
e40r0000.mtx 17281 553956 1.106 1.910 3.966
fidap011.mtx 16614 1091362 2.109 3.760 7.741
fidapmll.mtx 22294 623554 1.263 2.210 4.552
memplus.mtx 17758 126150 0.293 0.410 0.906
qc2534. mtx 2534 463360 0.896 1.450 3.090
s3dkt3m2.mtx 90449 1921955 3.831 7.100 4.386
score 1.000 1.711 3.564
IBM Power3
matrices n nz F90 C Java
af23560.mtx 23560 484256 1.970 3.510 3.247
besstk30.mtx 28924 1036208 4.320 7.550 7.061
e40r0000.mtx 17281 553956 2.300 4.020 3.624
fidap011.mtx 16614 1091362 4.480 7.770 7.118
fidapmll.mtx 22294 623554 2.700 4.510 4.168
memplus.mtx 17758 126150 0.488 0.887 0.776
qc2534.mtx 2534 463360 1.755 3.190 2.671
s3dkt3m2.mtx 90449 1921955 8.280 14.310 13.528
score 1.000 1.756 1.592

13

experimented on a PowerPC Silver processor. It was found that the I/O per-
formance of C and Java versions are no more than 25% slower than the F90
version, while in terms of the compute performance, C and Java are about
17% and 85% slower, respectively. In view of these, we do not understand
why Java performed so poorly on the Power3. (Or: This may indicate that
Java is not able to utilise the extra floating point pinelines that are available
on the Power3 and the Sun Ultra80, but not available on the PowerPC and
the Pentium IT processors)

4 The SciMark2 Benchmark

SciMark 2.0 (http://math.nist.gov/scimark2/) is a Java benchmark for
scientific and numerical computing. It measures several computational ker-
nels and reports a composite score in approximate Mflops/s. This bench-
mark was developed at the US National Institute of Standards and Technol-
ogy (NIST). Part of the benchmark can also be found in the Java Grande Fo-
rum Benchmark Suite (http://www.epcc.ed.ac.uk/javagrande/javag.
html). This benchmark contains codes on FFT, SOR (Successive Over-
Relaxation over a 2D grid), Monte-Carlo integration, Sparse matmult (S-
parse matrix vector multiplications) and LU factorization. We have cho-
sen this benchmark because the same benchmark is available both in Java
and C, allowing us to compare the two languages. There are many other
Java benchmarks available, see http://www.epcc.ed.ac.uk/javagrande/
links.html.

Table 4 contains the result of this benchmark. The compiler flag used
with gcc is =02 -funroll-loops, which is the flag that comes with the
makefile of this benchmark. The loop unrolling does seem to improve the
performance of the LU factorization and the sparse matrix vector multi-
plications, although it had minimal effect on our previous sparse matrix
multiplication benchmark, and was therefore not used for that. We used
two settings of the benchmark: SMALL and LARGE. When the SMALL
setting is chosen, the problems tend to be able to fit into the cache. The
LARGE setting is useful in measuring the capability of the memory subsys-
tem since the size of the benchmark at that setting is designed to be much
bigger than most low-level caches (> 2MB).

On the Pentium system, for the SMALL setting, Java (IBM) is about
30% slower (45.80/35.50 — 1) than C, while for larger problems it is about
40% slower. The Java (Sun) again does not perform as well as Java (IBM),
and is on average 33% slower than Java (IBM) on SMALL setting and 12%

14

Table 3: Comparing the computing performance (in seconds) of Java with
F90 and C for multiplying two sparse matrices.

Pentium II
matrices n nz abfo0 pgf90 gce Java (IBM) Java (Sun)
af23560.mtx 23560 484256 1.765 3.584 1.820 2.182 2.824
besstk30.mtx 28924 1036208 5.034 8.600 5.780 6.484 9.319
e40r0000.mtx 17281 553956 2.790 4.870 3.100 3.618 5.093
fidap01l.mtx 16614 1091362 8.997 14.110 10.730 12.358 16.948
fidapmll.mtx 22294 623554 3.232 5.896 3.380 3.899 5.202
memplus.mtx 17758 126150 2.631 4.719 2.390 2.863 3.757
qc2534.mtx 2534 463360 10.266 12.508 12.760 13.348 19.072
s3dkt3m2.mtx 90449 1921955 5.159 10.778 5.600 6.948 8.329
score 1.000 1.747 1.096 1.267 1.709
Sun Ultra 80

matrices n nz F90 C Java

af23560.mtx 23560 484256 1.081 1.070 2.529

besstk30.mtx 28924 1036208 3.323 3.510 8.530

e40r0000.mtx 17281 553956 1.862 1.940 4.751

fidap0ll.mtx 16614 1091362 5.972 6.560 15.195

fidapmll.mtx 22294 623554 2.063 2.080 4.428

memplus.mtx 17758 126150 1.656 1.440 2.793

qc2534. mtx 2534 463360 5.958 6.780 16.263

s3dkt3m2.mtx 90449 1921955 3.368 3.340 8.849

score 1.000 1.024 2.399

IBM Power3

matrices n nz F90 C Java

af23560.mtx 23560 484256 0.380 0.482 1.085

besstk30.mtx 28924 1036208 1.100 1.435 3.264

e40r0000.mtx 17281 553956 0.598 0.783 1.796

fidap011.mtx 16614 1091362 1.865 2.580 5.524

fidapml1l.mtx 22294 623554 0.730 0.907 1.935

memplus.mtx 17758 126150 0.490 0.573 1.339

qc2534.mtx 2534 463360 1.665 2.360 5.428

s3dkt3m2.mtx 90449 1921955 1.220 1.575 3.513

score 1.000 1.298 2.914

15

slower on the LARGE setting.

On the Sun Ultra 80, Java is about 170% slower than C on the SMALL
setting and 103% slower on the LARGE setting!

On the IBM Power3, Java is about 2.19 times slower than C on the
SMALL setting and 1.97 times slower on the LARGE setting! As in Sec-
tion 3, we did run the SciMark2 on a PowerPC Silver platform as well. It
was found that on the IBM PowerPC Silver processor, Java was about 42%
slower than C on the SMALL setting and only 24% slower on the LARGE
setting. Again we do not understand why the performance of Java is so poor
on the Power3.

5 Conclusions

In this report the performance of Java has been compared with that of
Fortran 90 and C on two benchmarks of particular interest to scientific and
engineering applications. It was found that in comparison with F90 and
C, the I/O and compute performance of Java various from 30% slower to
about 3 times slower, depending on the platforms and the compilers (and
the JVMs). The best relative performance is achieved on a Pentium II,
where it was found that the IBM Java (Version 1.3) yields code that is
about 30-40% slower in computing and I/O performance. Given the special
advantages of Java, we felt that this slightly inferior performance of JAVA
may be acceptable for many applications. In any case the performance of
Java seen in this work is certainly a big improvement over the situation only
1-2 years ago when it was generally perceived that Java could only achieve,
say, 20% the speed of Fortran and C.

A number of issues make it difficult for Java to be used in large scientific
and engineering applications, these include the lack of efficient multidimen-
sional array, the lack of complex number support, no operator overloading,
inability to take advantage of fused multiply-add and associativity of oper-
ations in compiler optimizations, the lack of a Math Library that produces
the same results on all Java platform, and the difficulties in interfacing Java
with other languages. There is currently many activities to address these
issues. These include some closely related/intersected forums and activities,
such as the Java Grande Forum (http://www.javagrande.org), the JN-
T (Java Numerical Toolkit) project (http://math.mist.gov/jnt), which
includes proposals for Java BLAS interface, and the JNL (Java Numeri-
cal Library, http://www.vni.com/products/wpd/jnl). It can be expected
that compiler technology and support libraries will continue to improve. We

16

Table 4: Results (in Mflops/s) of the SciMark2 benchmark for Java and C.

Pentium 11
SMALL LARGE
Applications gcc Java (IBM) Java (Sun) gecc Java (IBM) Java (Sun)
FFT 39.93 24.70 14.97 5.80 6.75 5.42
SOR 79.49 74.22 60.15 50.29 38.09 33.85
MonteCarlo 10.69 4.17 3.69 10.65 4.16 3.69
Sparse matmult 41.80 28.42 20.63 19.05 15.64 13.33
LU 57.08 24.70 14.97 27.71 6.75 5.42
Composite Score 45.80 35.50 26.63 22.70 16.24 14.50
Sun Ultra 80
SMALL LARGE

Applications C Java C Java

FFT 63.38 17.27 10.71 7.32

SOR 135.32 54.66 89.96 44.87

MonteCarlo 17.25 5.82 16.99 5.88

Sparse matmult 48.91 22.40 30.48 17.27

LU 94.03 17.27 52.78 7.32

Composite Score 71.78 25.71 40.18 19.78

IBM Power3
SMALL LARGE

Applications C Java C Java

FFT 117.22 78.37 10.89 11.31

SOR 147.32 94.19 142.47 91.72

MonteCarlo 22.60 5.07 22.60 5.09

Sparse matmult 120.92 71.89 122.49 75.16

LU 341.33 78.37 244.20 11.31

Composite Score 149.88 68.32 108.53 55.17

17

believe we are closer to a time when new scientific and engineering applica-
tions could equally well be written in Java to benefit from its advantages,
without the need to worry about the loss of performance.

References

[1] S. P. Midkiff, J. E. Moreira and M. Snir, Optimizing Array Reference
Checking in JAVA Programs, IBM Systems Journal, 37 (409-453), 1998.

[2] C. Rijk, Binaries vs Byte-codes, Ace’s Hardware, June 27, 2000. (http:
//www.aceshardware.com/Spades/read.php?article_id=153).

[3] K. Maguire and B. Searle, Low cost HPC?, in Proceeding of the 9th
Daresbury Machine Evaluation Workshop, R.J. Allan, M.F. Guest,
B.G. Searle, K. Maguire (Eds), Daresbury Machine Evaluation Work-
shop, CLRC Daresbury Laboratory, Daresbury, 26-27 November, 1998.

18

