A Gallery of Large Graphs

graph visualization of matrices from the University of Florida Collection

Graph visualization is a way to discover and visualize structures in complex relations. What sort of structures are people who do large scale computation studying? We can get a glimpse by visualizing the thousands of sparse matrices submitted to the University of Florida Sparse Matrix collection using sfdp algorithm . The resulting gallery contains the drawing of graphs as represented by 2568 sparse matrices in this collection. Each of these sparse matrices (a rectangular matrix is treated as a bipartite graph) is viewed as the adjacency matrix of an undirected graph, and is laid out by a multilevel graph drawing algorithm. If the graph is disconnected, then the largest connected component is drawn. The largest graphs have tens of millions of nodes and over a billion of edges. A simple coloring scheme is used: longer edges are colored with colder colors, and short ones warmer. The graphs are in alphabetical order. Use the "Search" link to find graphs of specific characters.

Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 All Next   Search

TSOPF@TSOPF_RS_b39_c19

TSOPF/TSOPF_RS_b39_c19
TSOPF@TSOPF_RS_b39_c30

TSOPF/TSOPF_RS_b39_c30
TSOPF@TSOPF_RS_b39_c7

TSOPF/TSOPF_RS_b39_c7
TSOPF@TSOPF_RS_b678_c1

TSOPF/TSOPF_RS_b678_c1
TSOPF@TSOPF_RS_b678_c2

TSOPF/TSOPF_RS_b678_c2
TSOPF@TSOPF_RS_b9_c6

TSOPF/TSOPF_RS_b9_c6
Um@2cubes_sphere

Um/2cubes_sphere
Um@offshore

Um/offshore
UTEP@Dubcova1

UTEP/Dubcova1
UTEP@Dubcova2

UTEP/Dubcova2
UTEP@Dubcova3

UTEP/Dubcova3
vanHeukelum@cage10

vanHeukelum/cage10
vanHeukelum@cage11

vanHeukelum/cage11
vanHeukelum@cage12

vanHeukelum/cage12
vanHeukelum@cage13

vanHeukelum/cage13
vanHeukelum@cage14

vanHeukelum/cage14
vanHeukelum@cage15

vanHeukelum/cage15
vanHeukelum@cage3

vanHeukelum/cage3
vanHeukelum@cage4

vanHeukelum/cage4
vanHeukelum@cage5

vanHeukelum/cage5

Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 All Next   Search