A Gallery of Large Graphs

graph visualization of matrices from the University of Florida Collection

Graph visualization is a way to discover and visualize structures in complex relations. What sort of structures are people who do large scale computation studying? We can get a glimpse by visualizing the thousands of sparse matrices submitted to the University of Florida Sparse Matrix collection using sfdp algorithm . The resulting gallery contains the drawing of graphs as represented by 2568 sparse matrices in this collection. Each of these sparse matrices (a rectangular matrix is treated as a bipartite graph) is viewed as the adjacency matrix of an undirected graph, and is laid out by a multilevel graph drawing algorithm. If the graph is disconnected, then the largest connected component is drawn. The largest graphs have tens of millions of nodes and over a billion of edges. A simple coloring scheme is used: longer edges are colored with colder colors, and short ones warmer. The graphs are in alphabetical order. Use the "Search" link to find graphs of specific characters.

Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 All Next   Search

GHS_psdef@vanbody

GHS_psdef/vanbody
GHS_psdef@wathen100

GHS_psdef/wathen100
GHS_psdef@wathen120

GHS_psdef/wathen120
Gleich@flickr

Gleich/flickr
Gleich@minnesota

Gleich/minnesota
Gleich@usroads

Gleich/usroads
Gleich@usroads-48

Gleich/usroads-48
Gleich@wb-cs-stanford

Gleich/wb-cs-stanford
Gleich@wb-edu

Gleich/wb-edu
Gleich@wikipedia-20051105

Gleich/wikipedia-20051105
Gleich@wikipedia-20060925

Gleich/wikipedia-20060925
Gleich@wikipedia-20061104

Gleich/wikipedia-20061104
Gleich@wikipedia-20070206

Gleich/wikipedia-20070206
Goodwin@goodwin

Goodwin/goodwin
Goodwin@rim

Goodwin/rim
Graham@graham1

Graham/graham1
Grund@b1_ss

Grund/b1_ss
Grund@b2_ss

Grund/b2_ss
Grund@bayer01

Grund/bayer01
Grund@bayer02

Grund/bayer02

Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 All Next   Search